
Gold hw2pr2: The sleepwalking student 

Copied from: 
https://www.cs.hmc.edu/twiki/bin/view/CS5/SleepwalkingStuden
tGold on 3/22/2017 

[35 points; individual or pair] filename: hw2pr2.py 

For hw2pr2.py you will write Python functions to investigate the behavior of 
a sleepwalking student, a.k.a., a "random walk." 

You should place your functions in a file named hw2pr2.py. 

Part 1: Copy this function:    rs() 

Start your file with this header and function, named rs() 

# CS5 Gold, hw2pr2 

# Filename: hw2pr2.py 

# Name: 

# Problem description: Sleepwalking student 

 

import random   

 

def rs(): 

    """ rs chooses a random step and returns it  

        note that a call to rs() requires parentheses 

        inputs: none at all! 

    """ 

    return random.choice([-1,1]) 

 

You can call rs() function whenever you want to obtain a new, random step: 

either 1 or -1. 

An advantage of this is that it is easy to change what is meant by "random 

step" in the future, without changing any other code! 

 

import vs from ... import * 

If you use the library-import statement 

https://www.cs.hmc.edu/twiki/bin/view/CS5/SleepwalkingStudentGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/SleepwalkingStudentGold


import random 

you can use the random library, but you will need to preface each call with the 

library's name: 

random.choice( [-1,1] ) 

Another way to import libraries is to use 

from random import * 

In this case, you can simply type choice( [-1,1] ) , which is a bit shorter. 

A problem could arise if you had another function named choice already. For 

the moment, that isn't a concern. 

 

A reminder on string multiplication 

For this problem, string multiplication is very useful. Here is a reminder: 

In [1]: print('spam'*3) 

 

spamspamspam 

 

In [2]: print('start|' + '_'*10 + '|end') 

 

start|__________|end 

In this latter example, '_'*10 specified how much space to place 

between 'start|' and '|end'. 

It's nice to use underscores (or some other "ocean") in which your 
sleepwalker will venture! 

 

Part 2: Write:    rwpos( start, nsteps ) 

Next, write a function named rwpos( start, nsteps ) which takes two inputs: 

• an integer start, representing the starting position of our sleepwalker, 

and 



• a nonnegative integer nsteps, representing the number of random 

steps to take from this starting position. 

The name, rwpos is a reminder that this function should return 

the random walker's position. 

Write rwpos so that it returns the position of the sleepwalker 

after nsteps random steps, where each step moves according to rs(), which 

means either plus 1 or minus 1 from the previous position. 

 

Example random code from class... 

Here is some of the random number-guessing code from class, if you'd like to 

use it as a starting point... 

 

Printing/debugging code to include 

As part of your rwpos function, include a line of debugging code that prints 
what start is each time the function is called. Include the string start is, 

too, as in the examples below. 

Remember that, because each step is random, the exact values your 
function produces will likely be different than these, though the overall 
behavior should be the same: 

In [1]: rwpos( 40, 4 ) 

start is 40 

start is 41 

start is 42 

start is 41 

start is 42 

Out[1]: 42 

 

In [2]: rwpos( 40, 4 )    # won't be the same each time... 

start is 40 

start is 39 

start is 38 

start is 37 

start is 36 

Out[2]: 36 

https://www.cs.hmc.edu/twiki/bin/view/CS5/RandomExamplesForHw2
https://www.cs.hmc.edu/twiki/bin/view/CS5/RandomExamplesForHw2


Is it 4 or 5 printed lines? 

You may have four lines of output instead of five -- this most likely depends 

on whether or not you print when the base case is hit. Either way is 
completely fine for this problem. 

No loops! 

Even if you've used while or for loops in the past, for this problem we ask 

you to use recursion. 

These assignments are primarily to develop design skills -- specifically, 
recursive design. Don't worry -- there will be plenty of loops later in the 

term. 

 

Part 3: Write    rwsteps(start, low, hi) 

Next, write rwsteps( start, low, hi ) which takes three inputs: 

• an integer start, representing the starting position of our sleepwalker, 

• an integer low, which will always be nonnegative, representing the 

smallest value our sleepwalker will be allowed to wander to, and 
• an integer hi, representing the highest value our sleepwalker will be 

allowed to wander to. 

You may assume that hi >= start >= low. 

What should rwsteps do?     It should simulate a random walk, printing 

each step (see below). Also, as soon as the sleepwalker reaches at or 
beyond the low or hi value, the random walk should stop. When it does 

stop, rwsteps must return the number of steps that the sleepwalker took in 

order to finally reach the lower or upper bound. 

Printing/debugging code:     In rwsteps include a line of debugging code 

that prints a visual representation of your sleepwalker's position while 
wandering! 

Feel free to be more creative than a simple 'S' character. For example, 

consider 0->-< (a true sleepwalker!) 



As an extra-credit challenge (a fun one), you might create a more elaborate 
sleepwalker simulation that changes its looks depending on which direction 

it's heading (eyes looking left or right?). Or, it could interact with some other 
items/people/things on its path - see the extra-credit, below. 

Examples     Here are two plain-wandering examples, one using spaces and 

one using the underscore character (making it easier to see what's going on 
than with spaces!). One has walls on either side and one does not. The 
specifics of spacing, walls, etc, are entirely up to you -- be creative! Also, as 

a reminder, you can create a string of 10 underscore characters with 10*'_': 

string-multiplication is helpful here! 

In [1]: rwsteps( 10, 5, 15 ) 

     |_____S_____| 

     |____S______| 

     |___S_______| 

     |__S________| 

     |___S_______| 

     |____S______| 

     |___S_______| 

     |__S________| 

     |_S_________| 

     |S__________| 

Out[1]: 9                     # here is the return value! 

 

In [2]: rwsteps( 10, 7, 20 ) 

           S 

            S 

             S 

            S 

           S 

          S 

           S 

          S 

           S 

          S 

         S 

        S 

Out[2]: 11 

Use recursion to implement rwsteps for this problem. 

Hints: this problem can be tricky because you are both adding a random 
step and adding to the ongoing count of the total number of steps! 



One way to do this is to use the line rest_of_steps = rwsteps( newstart, low, 

hi ) as the recursive call, with an appropriate assignment to newstart on the 

line above it, and an appropriate use of rest_of_steps in the return value 

below it... . 

Recursion limit exceeded?     You can get more memory for recursion by 
adding these lines to the top of your file: 

import sys 

sys.setrecursionlimit(50000) 

This provides 50000 function calls in the recursive stack. 

Want to slow down your sleepwalker?     You can also slow down the 
simulation by adding these lines to the top of your file: 

import time 

import sys 

Then, in your rwsteps or rwpos functions, you can include the lines 
sys.stdout.flush()   # forces Python to print everything _now_ 

time.sleep(0.1)      # and then sleep for 0.1 seconds 

Adjust as you see fit! 

 

Part 4: Create simulations to analyze your 

random walks 

To analyze random walks, we need two terms:  

1. The "signed-displacement" is the number of steps away from the 
start that the random walker has reached. It is signed, because 
displacements to the right are considered positive and displacements 

to the left are considered negative. This is natural: to find the signed 
displacement, simply subtract: it's the ending position of the random 
walker minus the starting position of the random walker. To do this, 

you will write a variation of rwopos, not rwsteps.  

2. The "squared-displacement" is the square of the number of steps 
away from the start that the random walker has reached. That is, it is 

the square of the signed displacement. 



With these two terms in mind, here are the two questions we ask you to 
investigate: 

• What is the average final signed-displacement for a random walker 
after making 100 random steps? What about after N random steps? As 

described above, the signed-displacement is just the output 

of rwpos minus the start location. Do not use abs.  

• What is the average squared-displacement for a random walker after 
making 100 random steps? What about after N random steps, in terms 

of N? Be sure you square the signed displacements before you sum 

the values in order to average them! 

You should adapt the random-walk functions you wrote to investigate these 
two questions. In particular, you should 

• To-do item #1    Write a version of rwpos that does not print any 

debugging or explanatory information. Rather, it should simply return 
the final position. Call this new version rwposPlain . Be careful! the 

recursive call(s) will need to change so that they call rwposPlain, 

not rwpos!  

• To-do item #2    Come up with a plan for how you will answer these 

questions. This plan should include a list comprehension similar to the 
following: 

LC = [ rwposPlain(0,100) for x in range(142) ] 

Not surprisingly, the 142 will probably be replaced by a variable in your 

final implementation. To find the average of the values created, you 
will use sum(LC), along with len(LC)...  

• To-do item #3    To build intuition, run the above list comprehension 

at the Python >>> prompt. Look at the resulting value of LC (there will 

be 142 elements). Also, find the average of LC.  

• To-do item #4    Write two more functions: 

o ave_signed_displacement( numtrials ), which should 

run rwposPlain(0,100) for numtrials times and return the average 

of the result. Use the above list comprehension as the first line 
of your function! (You'll want to replace 

o ave_squared_displacement( numtrials ), which should 

run rwposPlain(0,100) for numtrials times and return the average 

of the squares of the results! One way to do this is to create a 



slightly different list comprehension. Remember that x**2 is 

Python's way of squaring x. 

 
 
 

• Then, use your functions and reflect on the results you find from these 

computational tests. To do this, place your answers inside your python 
program file by either making them comments (using the # symbol) 

OR, even easier, including them in triple-quoted strings (since they 

can include newlines). For example, 

""" 

     In order to compute the average signed displacement for 

     a random walker after 100 random steps, I ... 

         (briefly explain what you did and your results) 

 

     Be sure to copy the data and average from at least 

     one of your runs of ave_signed_displacement and 

     at least one of your runs of ave_squared_displacement 

""" 

Thus, your file should include 

• (1) answers to these two questions and how you approached them and 

• (2) the above Python functions, including ave_signed_displacement( 

numtrials ) and ave_squared_displacement( numtrials ) 

Make sure to include explanatory docstrings and comments for each function 
you write! 

Please include any references you might have used - you're welcome to read 
all about random walks online, if you like. 

However, you should feel free not to bother - whether your 

answers/analyses are correct or not will have no effect on the grading of this 
Part 4 of this problem! 

Rather, it will be graded on whether your functions work as they should, 

whether they would be helpful in answering those questions, and in the 
clarity and effectiveness of your write-up. 

 



Extra: Optional Ex. Cr. variations 

For up to +5ec points (optional), feel free to make variations in the ASCII 
wandering of your sleepwalker(s)... 

• For example, a particularly creative ASCII emoji or boundary might be 

worth +1 or +2 points. 
• A character that changes depending on whether it's moving left or 

right might be worth +2 or +3 points. 

• A separate rwsteps function that has more than one wanderer (perhaps 

interacting with each other) might be +3 or +4 points 
• Combining all of these or doing something totally crazy (2d, anyone?) 

might be +4 or +5 points ... 

Be sure to add an clear and obvious comment bragging about your extras -- 
we don't want to miss them! 

 

Submit! 

Submit your hw2pr2.py file at the usual place! 

 

 


	Gold hw2pr2: The sleepwalking student
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/SleepwalkingStudentGold on 3/22/2017
	[35 points; individual or pair] filename: hw2pr2.py

	Part 1: Copy this function:    rs()
	import vs from ... import *
	A reminder on string multiplication

	Part 2: Write:    rwpos( start, nsteps )
	Example random code from class...
	Printing/debugging code to include
	Is it 4 or 5 printed lines?
	No loops!

	Part 3: Write    rwsteps(start, low, hi)
	Part 4: Create simulations to analyze your random walks
	Extra: Optional Ex. Cr. variations
	Submit!

