
Black Problem 1 (lab): Python Turtles

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/
PrettyPicturesBlack on 3/22/2017

[35 points; individual or pair] filename: hw2pr1.zip

For this problem, you'll submit a zipped folder of files.

It is easiest to start with this folder: hw2pr1.zip

Here's how to get started:

• Download the above folder.

• Unzip that folder. Please do NOT use external tools for
this. Rather:

o To unzip on MacOS, simply double-click the hw2pr1.zip file you've

downloaded
o To unzip on Windows, right-click and choose Extract All…, e.g.,

• Navigate into the hw2pr1 folder that results.

o Be sure you've unzipped the folder; Windows will let you navigate a zipped

folder, but will not let you run Python programs from within it
• You'll see an image file named poly_example.png (a septagon)

• Right-click on the hw2pr1.py file to open it with IDLE.

When it's time to submit, you'll re-zip the hw2pr1 folder (instructions below)

to include

• Your updated hw2pr1.py file, with additional functions

• At least three new screenshot images

o One each of your spiral, your svtree, and your snowflake

https://www.cs.hmc.edu/twiki/bin/view/CS5/PrettyPicturesBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/PrettyPicturesBlack
http://www.cs.hmc.edu/~cs5grad/cs5/hw2pr1.zip

• For extra credit, we invite you to include other images and functions of
your own design…

Using turtle graphics

Canopy users If you're using Canopy, the turtle graphics should work for

you. If you're using another specially-packaged Python version (such as
Idle), or if you have difficulties, you may need to use a plain-Python install
(i.e., the command line) for turtle to work. Alternatively, you can use one

of these two online Python interpreters that support turtle-graphics. Each
has example code (linked at right) to get you started, as well:

• turtle within interactive Python Here is example code for this site.

• turtle within skulpt's in-browser Python Here is example code for this
site.

In a plain install of Python 2.7.x, turtle works pretty well just "out of the
box."

You can check this, e.g., by typing these commands:

http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/intro-HelloLittleTurtles.html
https://www.cs.hmc.edu/twiki/bin/view/CS5/ExampleCodeForIntTurtlePython
http://www.skulpt.org/
https://www.cs.hmc.edu/twiki/bin/view/CS5/ExampleCodeForSkulptTurtlePython
https://www.cs.hmc.edu/twiki/bin/view/CS5/ExampleCodeForSkulptTurtlePython

If everything works, you should see the following picture drawn in a new
window:

Closing the turtle window

To close the turtle window, type at the prompt

>>> done()

…then you can click on the red window-closing button of the turtle window.

Warning! Don't include done() in your code or your functions!

Turtle graphics not working well?

An alternative is to try one of the two online turtle-graphics options, linked

above.

Python's turtle graphics can work differently on different systems. If it's
working poorly for you (stalling/freezing), it's because IDLE and turtle are

both trying to control Python's graphics and are getting in each other's way.

In such cases we have had success with running turtle functions from the
command-line, rather than from IDLE.This page describes how to run Python

from the command-line, both for Windows machines and Macs.

Trying some more turtle commands

https://www.cs.hmc.edu/twiki/bin/view/CS5/RunningPythonFromTheCommandLine
https://www.cs.hmc.edu/twiki/bin/view/CS5/RunningPythonFromTheCommandLine

Here are some additional examples, highlighting a few more commands,
such as up, down, xcor, and ycor:

>>> from turtle import * # needed to access the turtle

commands

>>> forward(100) <-- turtle goes forward 100 steps

>>> right(90) <-- turtle turns right 90 degrees

>>> up() <-- turtle lifts its pen up off of the paper

>>> forward(100) <-- turtle goes forward 100 steps

>>> down() <-- turtle puts its pen down on the paper

>>> color("red") <-- turtle uses red pen

>>> circle(100) <-- turtle draws circle of radius 100

>>> color("blue") <-- turtle changes to blue pen

>>> forward(50) <-- turtle moves forward 50 steps

>>> xcor() <-- turtle returns its current x-coordinate

>>> ycor() <-- turtle returns its current y-coordinate

For the complete set of turtle commands, go to the official Python turtle

page.

The spiral function (10 points)

Write a function

 spiral(initialLength, angle, multiplier)

that uses the turtle drawing functions to create a spiral that has a first

segment of length initialLength and whose neighboring segments form

angles of angle degrees. The multiplier will be a float that will indicate how

each segment changes in size from the previous one. For example, with

a multiplier of 0.5 each side in the spiral should be halfthe length of the

previous side.

Base cases!

The spiral should stop drawing when it has reached a side length of less than
1 pixel or greater than 1000 pixels.

http://docs.python.org/library/turtle.html
http://docs.python.org/library/turtle.html

Here is a screenshot from the call spiral(100, 90, 0.9)

Remember that you may need to type

>>> done()

at the prompt (not in your code), before closing the window.

Time to take a screenshot!

Once your spiral function is working, choose a color, line width, turtle

shape, etc., and then render your chosen spiral. (Make sure it's different
than the one above!)

Then, take a screenshot (whole-screen or just the turtle window):

• Windows: the snipping tool in Accessories works well. Here is a link
describing Windows screenshots

• Mac: command-shift-4 provides a "screenshot cursor" that will grab a
rectangle and save it to the desktop. Here is a link describing MacOSX
screenshots

Rename your screenshot as spiral.png (or spiral.jpg or any format your

machine supports).

Place your screenshot into the hw2pr1 folder (so it will be there when you

submit).

The svtree function (15 points)

Side-view tree

The idea here is to create a function that draws the side view of a tree:

 svtree(trunklength, levels)

http://windows.microsoft.com/en-us/windows-vista/use-snipping-tool-to-capture-screen-shots
http://windows.microsoft.com/en-us/windows-vista/use-snipping-tool-to-capture-screen-shots
http://support.apple.com/kb/PH11229
http://support.apple.com/kb/PH11229

Here is an example of the output from my function when svtree(128, 6) is

run:

and another example of the output when svtree(50, 2) is run:

Note that these are really side view! Calling left(90) before the call

to svtree will yield a more traditional pose.

Hints

The key to happiness with recursive drawing is this: the pen must be back
at the start (root) of the tree at the end of the function

call! Furthermore, the turtle must be facing in the same direction as before.
That way, each portion of the recursion "takes care of itself" relative to the
other parts of the image.

One thing not to worry about is the number of branches (anything greater
than 1 is OK), the exact angle of branching, the amount of reduction of
the trunklength in sub-branches, etc. Design your own tree by making

aesthetic choices for each of these.

Take a screenshot

Add some artistic embellishments of your own (something beyond the above

images, to be sure…).

Then, take a screenshot and rename it tree.png or tree.jpg or any format.

Move that image file into the hw2pr1 folder so that it will be there when you

submit!

The snowflake function (10 points)

Note that this is worth only 10 points. This not because it's easier than the previous

one, but because it's considerably more subtle. If you get it working, great! If not, this

scoring is meant to keep it in perspective.

The Koch Snowflake is three identical sides—it's the sides themselves that
are defined recursively. Because of this, we provide the

overall snowflake function:

def snowflake(sidelength, levels):

 """ fractal snowflake function

 sidelength: pixels in the largest-scale triangle side

 levels: the number of recursive levels in each side

 """

 flakeside(sidelength, levels)

 left(120)

 flakeside(sidelength, levels)

 left(120)

 flakeside(sidelength, levels)

 left(120)

You're invited to copy this function into your hw2pr1.py file.

Then, your task is to implement the flakeside(sidelength, levels) function

that will complete the definition of the Koch Snowflake. More information on
that fractal curve ishere, among other places on the web.

A base-case Koch snowflake side is simply a straight line of

length sidelength.

Each recursive level replaces the middle third of the snowflake's side with a
"bump," i.e., two sides that would be part of a one-third-scale equilateral
triangle.

As noted, all of the recursion occurs in flakeside. Remember that

• if levels is zero, then flakeside should produce a single segment (base

case!)

• otherwise, flakeside needs to call itself four times!

• Remember that flakeside is only creating one of the three sides of the

snowflake!

Here are images of four steps of the overall Koch curve's progression:

http://en.wikipedia.org/wiki/Koch_snowflake

Take a screenshot!

Add some artistic choices of your own and then take a screenshot of your

favorite snowflake. Rename it snowflake.png or snowflake.jpg or any format.

Move that image file into the hw2pr1 folder so that it will be there when you

submit!

Zipping and Submitting

Once you're finished, you'll submit a zip archive of your whole hw2pr1

folder.

The folder should include:

• Your hw2pr1.py file with all of your functions (and the ones provided

above)
• If you used an online turtle-graphics utility, place that code

into hw2pr1.py and note which site you used

• All of your screenshots should be there, too

Then, zip the folder. Again, don't use any external zip utilities. There
are built-in methods for both Windows and MacOS:

• (Windows) In older Windows you can right-click your hw2pr1 folder and

choose Send to…, then Compressed (zipped) folder. Here is a link to
instructions for Windows 8.

• (MacOS) You can right-click your hw2pr1 folder and

choose Compress. Here is a link to the official MacOS instructions.

Be sure to submit your hw2pr1.zip zipped version of your hw2pr1 folder to the

appropriate spot in the submissions system.

http://windows.microsoft.com/en-us/windows-8/zip-unzip-files
http://windows.microsoft.com/en-us/windows-8/zip-unzip-files
http://support.apple.com/kb/ph4048
http://www.cs.hmc.edu/submit

	Black Problem 1 (lab): Python Turtles
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/PrettyPicturesBlack on 3/22/2017
	[35 points; individual or pair] filename: hw2pr1.zip
	Using turtle graphics
	Trying some more turtle commands

	The spiral function (10 points)
	The svtree function (15 points)
	The snowflake function (10 points)
	Zipping and Submitting

