CS 100  Programming I
Project 3: Organization
John C. Lusth
Revision Date: October 2, 2015


[bookmark: id2]Preamble
You may develop your code anywhere, but you must ensure it runs correctly under a Linux distribution before submission.
[bookmark: id3]Program Organization
You must follow and implement the functions and programs described in this document to receive any credit.
The stepwise refinement methodology of the previous programming assignment exhibited a top-down approach. In a top-down approach, the main function is sequentially refined until the project is finished. For this project, you should take a bottom-up approach, in which you start out by writing the most basic functions and then write higher-level functions that call these basic functions, and so on.
Level 0
A board can be represented as a two-dimensional array or matrix. A location on the board can be represented as a row and a column. Define a set of functions and procedures for allocating and populating a board, given the specifications from the command line.
 
· One function should allocate an empty board. Two boards will be allocated with this function, one which will hold mine information (the mine board) and one which holds the covered/uncovered status of each square (the status board).
· A second procedure should place the desired number of mines on a given mine board.
· A third function, when given a mine board and a location, calculates the number of mines adjacent to that location. It does this by checking each of its eight (or fewer) neighbors for mines.
· A fourth procedure should place the number of adjacent mines in each square in a given mine board (via the third function).
· A fifth procedure should initialize the given status board so that every square is considered covered.
For the mine board, you will need to decide on a value to represent a mine that is distinguishable from the count of neighboring mines. For example, you can't use the number 1 to represent a mine, since it could also represent a count. For the status board, you will need a value that represents a covered square and a value to represent an uncovered square.
Place these functions and procedures in a module named game.py.
Write a program named level0.py that thoroughly tests the board allocation functions and initialization procedures. This program should import the game.py module.
Level 1
Define a procedure that displays a board. This function is given two boards, a mine board and a status board. As the board is being drawn, the function checks the status board to see if a covering mark should be displayed or if the number of adjacent mines (found on the mine board) should be displayed.
Place this procedure in io.py.
Write a program named level1.py that thoroughly tests your display procedure. Your program should print the initial board, manually uncover a few squares, print the board, manually uncover all the squares, and print the board one final time. This program will need to import the game.py and io.py modules.
Level 2
Define an pyrotechnic display procedure. At the start, this procedure should just print the word BOOM.
This procedure should be placed in io.py.
Write a program named level2.py that prints the initial board, manually uncover a few squares, prints the board again, and calls the pyrotechnic display procedure. This program will need to import both game.py and io.py.
Level 3
Define an "uncovering" function that, when given a mine board, a status board, and a location, uncovers the square on the given board. If the square has no adjacent mines, the function recursively calls itself to uncover all the neighbors of the square. If the function uncovers a square with a mine, it should return 1. Otherwise, it should return 0.
Place this function in game.py.
Write a program named level3.py that prints the initial board, calls the uncovering function to uncover a square that should have a cascading effect, and prints the board again.
Level 4
Define a "end of game" checking function that, when given a mine board and a status board, returns 0 if all covered squares contain mines and 1 otherwise.
Write a program named level4.py that tests the end-of-game checking function thoroughly.
Level 5
Define a "move" function that, when given a mine board and a status board, immediately calls the end-of-game checking function. If it returns 0, then the this function should return 2. Otherwise, this function prompts for a location and then uncovers that square using the function from Level 3. If the uncovering function returns a 0, this function should display the board using the procedure from Level 1 and return a 0. If the uncovering function returns a 1, then the pyrotechnic display procedure from Level 2 should be called and a value of 1 returned.
Note that a return value of zero means the game should continue. A return value of 1 or 2 means the game is over.
Place this function in io.py.
Write a program named level5.py that tests the three return values of the move function.
Level 6
Define a "game loop" procedure that implements a classic "reading" loop for running the game. The initial mine and status boards should be passed to this procedure. Before the loop starts, the move function from Level 5 should be called and the return value saved. As long as this saved return value is 0, the loop should run. The body of the loop reruns the move function, resaving the return value. When the loop exits, either call the pyrotechnic display procedure or a congratulatory message.
Place this procedure in minesweeper.py, along with a main function. The main function should allocate the game boards and call the game-loop procedure.
Your final program should consist of minesweeper.py, game.py, and io.py.
Level 7
Refine the procedures from Level 1 and Level 2 to make a more spectacular game. Making system calls with the clear program can make the game look nicer.
Note, for each function you write at each level, you should use top-down stepwise refinement. That is to say, start with the simplest version of the function and successively add capability to the function. Save each program from each level.
Note also: you should see the following modules when you submit: minsweeper.py, game.py, io.py, level0.py, level1.py, level2.py, level3.py, level4.py, and level5.py.
The level functions will be tested and graded as well as your minesweeper program!
lusth@cs.ua.edu

