
Gold Problem 2: Pi from pie

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/PiFromPieGold on
3/22/2017

[30 points; individual or pair]

Filename: hw8pr2.py

It is perhaps surprising that it is possible to estimate the mathematical
constant π without resorting to any techniques or operations more

sophisticated than counting, adding, and multiplication. This problem asks
you to write two functions that estimate pi (3.14159...) by dart-throwing.

Computing Pi from Pie: background

Imagine a circle inscribed within a square that spans the area where -1 ≤ x ≤

1 and -1 ≤ y ≤ 1. The area of the inscribed circle, whose radius is 1.0 would

be π .

If you were to throw darts at random locations in the square, only some of
them would hit the circle inscribed within it. The ratio

area of the circle / area of the square

can be estimated by the ratio
number of darts that hit the circle / total number of darts thrown

As the number of darts increases, the second ratio, above, gets closer and

closer to the first ratio. Since three of the four quantities involved are
known, they can be used to approximate the area of the circle - this in turn
can be used to approximate π

Designing your dart-throwing...

To throw a dart, you will want to generate random x and y coordinates
between -1.0 and 1.0. Be sure to include the line

import random

https://www.cs.hmc.edu/twiki/bin/view/CS5/PiFromPieGold

near the top of your file. When you do this, you will now be able to use the
function
random.uniform(-1.0, 1.0)

That line will return a floating-point value that is in the range from -

1.0 to 1.0 . For example, you will be able to write
x = random.uniform(-1.0, 1.0)

Helper function to write: throwDart()

With this background in mind, many have found it helpful to write a helper
function that

• throws one "dart" at the square by generating getting a random x and

a random y coordinate between -1 and 1

• determines whether that dart is within the circle of radius 1 centered
at the origin -- you can use the math.sqrt function to check this,

though you may note that it's not strictly necessary!
• returns True if the dart hits the circle and False if the dart misses the

circle

• remember that the dart will always hit the square, by the way the
throw is designed...

This helper function could be used for both of this problem's main

functions: forPi and whilePi.

However you design your Monte Carlo simulation, you should be sure - as
always - to include an explanatory docstring for each of your functions!

Main function to write #1: forPi(n)

Your forPi(n) function will take in a positive integer n as input.

It should "throw" n darts at the square.

Each time a dart is thrown, the function should print

• the number of darts thrown so far

• the number of darts thrown so far that have hit the circle
• the resulting estimate of π

Return value - be sure to do this!

The forPi function should return the final resulting estimate of

π after n throws.

Here is an example run to show how forPi should work:

• Your printing will vary because of the randomness... .
• However, it should converge to the real value of π as the number of

darts, n gets larger

In [1]: forPi(10)

1 hits out of 1 throws so that pi is 4.0

2 hits out of 2 throws so that pi is 4.0

3 hits out of 3 throws so that pi is 4.0

4 hits out of 4 throws so that pi is 4.0

4 hits out of 5 throws so that pi is 3.2

5 hits out of 6 throws so that pi is 3.33333333333

6 hits out of 7 throws so that pi is 3.42857142857

6 hits out of 8 throws so that pi is 3.0

7 hits out of 9 throws so that pi is 3.11111111111

8 hits out of 10 throws so that pi is 3.2

Out[1]: 3.2

Main function to write #2: whilePi(error)

Your whilePi(error) function will take as input a positive floating-point

value, error.

It should then proceed to throw darts at the dartboard (the square) until

the absolute difference between the function's estimate of π and the real
value of π is less than error.

Your whilePi function requires the actual, known value of π in order to

determine whether or not its estimate is within the error range! Although
this would not be available for estimating a truly unknown constant, for this
function you include the line

import math

in your code and then use the value of math.pi as the actual value of π .

Similar to your forPi function, for each dart throw your whilePi function

should print

• the number of darts thrown so far
• the number of darts thrown so far that have hit the circle
• the resulting estimate of π

after each dart throw it makes.

Return value - be sure to do this!

The whilePi function should return the number of darts thrown in order to

reach the input accuracy.

Here is an example run to show how whilePi works:

In [7]: whilePi(0.1)

1 hits out of 1 throws so that pi is 4.0

2 hits out of 2 throws so that pi is 4.0

3 hits out of 3 throws so that pi is 4.0

4 hits out of 4 throws so that pi is 4.0

5 hits out of 5 throws so that pi is 4.0

5 hits out of 6 throws so that pi is 3.33333333333

6 hits out of 7 throws so that pi is 3.42857142857

7 hits out of 8 throws so that pi is 3.5

7 hits out of 9 throws so that pi is 3.11111111111

Out[7]: 9

Submission

Be sure to submit your hw8pr2.py file in the usual way...

	Gold Problem 2: Pi from pie
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/PiFromPieGold on 3/22/2017
	Computing Pi from Pie: background
	Designing your dart-throwing...
	Helper function to write: throwDart()
	Main function to write #1: forPi(n)
	Main function to write #2: whilePi(error)
	Submission

