
Black Problem 3: Nim! [35 points; individual or

pair]

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Real
NimBlack on 3/22/2017

Please make sure that you have read the instructions on the Assignment 8

"Black" main page so that you understand the choices available to you this
week.

In this problem you will implement the game of Nim. In particular, the user

will play against the computer and the computer will use the optimal
"Nim Sum" algorithm described in class.

The Functionality of Your Program

Your Nim program should have the following features:

• The program begins "automatically": We just include the line
• if __name__ == "__main__":

• main()

at the bottom of the file (anywhere after the definition of

the main() function itself—typically at the very bottom of the file) and

Python will automatically invoke the main()function when the program

is invoked at the shell. Those long lines before and

after name and main are pairs of underscore symbols: There are two

consecutive underscores at the beginning and two consecutive ones at
the end.

• The program begins by offering a welcome message and then asking

the following questions in this order:
o "How many piles do you want?" Any integer greater than 1 is

valid. If the input is not an integer or is invalid (less than or
equal to 1), the program must detect that fact and ask again.
You will find the try...except... construct discussed in class

useful here.

o For each pile, the user should be asked "How many coins do you
want on pile 0?" (and then on pile 1, and pile 2, etc.). Again, you
must detect and reject all invalid inputs.

• The program now operates as follows until either the computer or
player wins, in which case the winner is declared by the computer.

https://www.cs.hmc.edu/twiki/bin/view/CS5/RealNimBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/RealNimBlack

Note that the computer is "player 1" (the player that makes the first
move):

o The number of coins on each pile is shown.
o If it's the computer's move, the computer indicates the number

of coins removed from the selected pile.

o If it's the player's move, the player is asked to specify a pile and
a number of coins to remove from that pile. If the player tries to
select a pile with no coins remaining, or in an invalid pile

number, the player should be told that this is an invalid selection
and asked to try again. Similarly, if the player tries to remove an
invalid number of coins (0 coins or more coins than are in the

pile) then the player is told that this is invalid and to try again.
As before, you must also detect and reject non-integer inputs.

• When the game is over, the player is asked if he/she would like to play

again. If so, the fun starts over.

Here is some sample input and output:

Welcome to Nim! I'm probably going to win...

How many piles would like? 4

How many coins in pile 0? 2

How many coins in pile 1? 3

How many coins in pile 2? 7

How many coins in pile 3? 5

I remove 1 coins from pile 0

Pile 0 has 1 coins

Pile 1 has 3 coins

Pile 2 has 7 coins

Pile 3 has 5 coins

Which pile would you like to remove from? 4

There's no such pile. Try again.

Which pile would you like to remove from? 2

How many coins do you wish to remove from pile 2? -5

That's not a valid number of coins. Try again.

How many coins do you wish to remove from pile 2? 4

Pile 0 has 1 coins

Pile 1 has 3 coins

Pile 2 has 3 coins

Pile 3 has 5 coins

I remove 4 coins from pile 3

Pile 0 has 1 coins

Pile 1 has 3 coins

Pile 2 has 3 coins

Pile 3 has 1 coins

Which pile would you like to remove from? 1

How many coins do you wish to remove from pile 1? 3

Pile 0 has 1 coins

Pile 1 has 0 coins

Pile 2 has 3 coins

Pile 3 has 1 coins

I remove 3 coins from pile 2

Pile 0 has 1 coins

Pile 1 has 0 coins

Pile 2 has 0 coins

Pile 3 has 1 coins

Which pile would you like to remove from? 0

How many coins do you wish to remove from pile 0? 1

Pile 0 has 0 coins

Pile 1 has 0 coins

Pile 2 has 0 coins

Pile 3 has 1 coins

I remove 1 coins from pile 3

Pile 0 has 0 coins

Pile 1 has 0 coins

Pile 2 has 0 coins

Pile 3 has 0 coins

I win!

Would you like to play again? n

Thanks for playing! Bye.

The Design of Your Program

Your program will be evaluated carefully for quality of design,
and approximately half of the score will be for following the good design

principles outlined in class and summarized below.

• Think about the design of your program and lay out the functions that
you'll need on paper before you do any actual programming. In

particular, try to identify the separate logical parts of your program.
For example, you might have a part of your program that prints the
contents of the board, another part that choose a move, and so forth.

For each part, ask yourself what arguments it will require and what
result it will produce. These parts can then be translated into Python
functions.

• Make sure that each of your Python functions really encapsulates one
particular well-defined task. Then, write the functions one by one. For

each function, include a docstring that explains the arguments that the
function takes, what the function is "responsible for doing", and what
result it produces. If your function is more than 10 or 12 lines of code,

ask yourself if it makes sense to break it up into separate
subfunctions. The answer may be "no"—but think about it.

• Think about your code carefully before you write it. There is usually

more than one way to get a computational task done. Software takes a
"short" time to write relative to the amount of time that it is used. It's
worth programming slowly and making sure that the code that you

write is clear, simple, and easy for you (or someone else) to go back
and read and/or modify. If your code seems complicated, it probably
can be rewritten in a simpler and more elegant way.

• Use comments when there is something in your code that is not self-
evident. You don't need to have a comment for every line, but lines or
blocks of code that do something that is not immediately obvious to

the casual observer merit at least some documentation. You will find
that it takes some experience to decide what is "not immediately
obvious"; if in doubt, ask a professor or grutor.

• Test each function as you write it. Make sure that the function that you
just wrote behaves correctly before moving on to the next
function. This will potentially save you enormous amounts of time and

anguish when debugging.
• Avoid global variables! debug is a notable exception, and on very rare

occasions it makes sense to introduce others. In general though, it's

cleaner and safer for functions to pass one another just what they
need to do their jobs.

• Use descriptive function and variable names. A function name

like printBoard is more descriptive than pb. Similarly, a variable name

like coins is more descriptive than c or x.

For the sake of debugging, you should have the following line at the top of

your code:

debug = True # debug is True if debugging info is to be

displayed, and False otherwise

Throughout your code, you should have conditional statements of the form:
if debug:

 print blah, blah, blah

that print out key information about the inner workings of your program.

In particular, if debug is True, your program should print out the XOR of the

number of coins in each pile. This will allow you to ensure that the behavior

of your program is correct. Later, of course, you can set debug to False to

deactivate the printing of this information.

Here are some specific observations for this problem:

• In some cases you may find yourself doing the same thing to each
element in a list. In this case, it's much simpler and more elegant to

use map (possibly with an anonymous function) than to build your own

code to do this iteratively. In general, use functional concepts
where they make your code simpler.

• You may wish to include code from an earlier assignment (in particular
to convert between base 10 and base 2). You may find it preferable to
modify that code to use lists rather than strings. It's up to you.

• Be sure to have a debug global variable (this should be your only global

variable). When this variable is True, the program should show all

kinds of internal details of the inner working of your program that
could be useful during debugging. We'll test your program with this

variable set to True and False to see its behavior in both cases.

Submit!

	Black Problem 3: Nim! [35 points; individual or pair]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/RealNimBlack on 3/22/2017
	The Functionality of Your Program
	The Design of Your Program
	Submit!

