
Black Problem 3: Image Compression 

Copied from: 
https://www.cs.hmc.edu/twiki/bin/view/CS5/Ima
geCompression 3/20/2017 

[20 points; individual or pair] 

filename: hw4pr3.py 

Ultimately, all data in a computer is represented with 0's and 1's. We've 

explored how symbols can be represented as sequences of 0's and 1's; in 
this problem we'll explore the representation of images using 0's and 1's. 

Let's begin by considering just 8-by-8 black-and-white images such as the 

one below: 

 

Each cell in the image is called a "pixel". A white pixel is represented by the 
digit 1 and a black pixel is represented by the digit 0. The first digit 

represents the pixel at the top left corner of the image. The next digit 
represents the pixel in the top row and the second column. The eighth bit 
represents the pixel at the right end of the top row. The next bit represents 

the leftmost pixel in the second row and so forth. Therefore, the image 
above is represented by the following binary string of length 64: 

'010101011010101001010101101010100101010110101010010101011010101

0' 

Of course, another way to represent that same string in python is 
'0101010110101010'*4 

(recall that this means 4 copies of the string '0101010110101010'). 

Backstory (optional!) 

https://www.cs.hmc.edu/twiki/bin/view/CS5/ImageCompression
https://www.cs.hmc.edu/twiki/bin/view/CS5/ImageCompression


So now what? Here's the gratuitous background story: You've been hired by 
MASA ("Mudd Air and Space Administration"). MASA has a deep-space 

satellite that takes 8-by-8 black-and-white images and sends them back to 
Earth as binary strings of 64 bits as described above. To save precious 
energy required for transmitting data, MASA would like to "compress" the 

images sent into a format that uses as few bits as possible. One way to do 
this is to use the run-length-encoding algorithm. 

For example, imagine that we have an image that looks like this: 

 

Using our standard sequence of 64 bits, this image is represented by a 
binary string beginning with 16 consecutive 1's (for two rows of white pixels) 
followed by 16 consecutive 0's (for two rows of black pixels) followed by 16 

consecutive 1's followed by 16 consecutive 0's. 

Run-length encoding (which, by the way, is used as part of the JPEG image 
compression algorithm) says: Let's represent that image with the code "16 

white, 16 black, 16 white, 16 black". That's a much shorter description than 
listing out the sequence of 64 pixels "white, white, white, white, …". 

In general, run-length coding represents an image by a sequence (called a 

"run-length sequence") of numbers: X1, X2, ..., XN where X1 is the number 
of consecutive 0's until the first 1. X2 is the number of consecutive 1's until 
the next 0, etc. until we're done. So, for our simple image above, we'd have 

the sequence 0, 16, 16, 16, 16. Notice that, by convention, the first number 
in the sequence is the number of consecutive 0's. Therefore, if the 
image/string starts with a 1, the first number in the run-length sequence is 0 

to indicate that the image begins with zero 0's. 

How do we convert the run-length sequence into a binary sequence? After 
all, the satellite must send a sequence of 0's and 1's. One possibility is that 

we represent each term X1, X2, X3 in the run length sequence with a base-2 
number with a fixed number, k, of bits. That way, we know that the 

first k bits correspond to the base 2 representation of X1. The next k bits 



correspond to the base 2 representation of X2, and so forth. (What is the 
right value of k to use? That's up to you, but you'll want to think about your 

choice so as not to use too few or too many bits.) 

Notice that this run-length encoding will probably result in a relatively small 
number of bits to represent the 4-stripe image above. However, it will 

probably do very badly (in terms of the number of bits that it uses) in 
representing the checkerboard image that we looked at first. In general, 
run-length encoding does a good job "compressing" images that have large 

blocks of solid color. Fortunately, this is true of many real-world images 
(such as the images that MASA gets, which are mostly black with a few 
white spots representing celestial bodies). 

Whew! So here's your job: 

• Write a function called compress(S) that accepts a binary string S of any 

length and returns another binary string. The returned binary string 

should be a run-length encoding of the original string. 
• Write a function called uncompress(C) that "inverts" or "undoes" the 

compressing in your compress function. That 

is, uncompress(compress(S)) should give back S. 

• Your compress function may sometimes give a result that is actually 

longer than its input. In a comment, explain what is 
the largest number of bits that your compress algorithm could possibly 

use to encode a 64-bit string/image. Also, explain what is 
the smallest number of bits that your compress algorithm could possibly 

ruse to encode a 64-bit string. 

• Write compression(S) to return the ratio of the compressed size to the 

original size for any binary string S. 

• Test your compression algorithm on several test images of your own 
design. In a comment, describe the tests that you conducted and the 

compression ratios that you found. You may find it useful to write 
some additional functions to help automate the testing of 
your compress algorithm. Here are a few test "images" that we are 

providing : 
o Penguin: "00011000"+"00111100"*3 + 

"01111110"+"11111111"+"00111100"+"00100100" 

o Smile: "0"*8 + "01100110"*2 + "0"*8 + "00001000" + 
"01000010" + "01111110" + "0"*8 

o Five: "1"*9 + "0"*7 + "10000000"*2 + "1"*7 + "0" + 

"00000001"*2 + "1"*7 + "0" 
• Professor I. Lai from the Pasadena Institute of Technology (P.I.T.) has 

made the following claim to MASA: "I have developed a new image 

compression algorithm Laicompress(S) that takes a 64-bit string 



and always outputs a shorter string that represents that image. That 
is, every image is compressed at least somewhat by my algorithm. Of 

course, I also have Laiuncompress that inverts the Laicompress algorithm 

so that Laiuncompress(Laicompress(S)) gives back S. In a 

comment, argue to MASA that Professor Lai is Lai-ing—such an 

algorithm cannot exist! Try to make your reasoning as convincing and 
watertight as possible. 

For all of your functions, you should think about your code before writing it. 

MASA (aka "the CS 5 grutors") will evaluate your code based on two criteria: 
How well it compresses random images that are are fairly sparse (either lots 
of white with a little black or vice versa) and how clean and elegant your 

code looks. In particular, try to write as few helper functions as possible, and 
keep those that you write short and simple. Try to use built-in higher-order 
functions such as map and reduce to do much of the "heavy lifting." (Short 

and simple code is easier to prove correct and easier to modify.) Make sure 
to test your functions carefully and to document them with docstrings and 
comments. (Note: In the spirit of having short and elegant code, 

you may find yourself wanting to write a function that returns two things. 
How can you do that? Have your function return a list of the two elements 
that you want!) 

 


	Black Problem 3: Image Compression
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/ImageCompression 3/20/2017
	Backstory (optional!)


