
Problem 4: Giigle Maps
Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/GiigleMaps
on 3/15/2017

Upto +10 pts. optional bonus problem

(individual or pair)
In class we discussed the problem of finding the shortest
path from a start vertex to a destination vertex in a map

in which all roads "point east". (The more general

problem in which one can go both east and west is a bit

more complicated.)
Here is an example of an "east-to-west" map.

We can represent a map using a Python "dictionary", as

described in class. For example, the map above would be

represented by the dictionary below (which we've called

Fi veDi st s), where the city names have been changed to be

" A" , " B" , " C" , " D" , and " E" rather than " Avill e" , " Beesbur g" ,
etc.

I nf = fl oat("i nf")

https://www.cs.hmc.edu/twiki/bin/view/CS5/GiigleMaps

fi veDi st s = {(" A"," A"): 0, (" A"," B"): 1, (" A"," C"): 3, (" A"," D"): 7 ,
(" A"," E"): I nf,
 (" B"," A"): I nf, (" B"," B"): 0, (" B"," C"): 42, (" B"," D"): 6,
(" B"," E"): 27,
 (" C"," A"): I nf, (" C"," B"): I nf, (" C"," C"): 0, (" C"," D"): 2,
(" C"," E"): 13,
 (" D"," A"): I nf, (" D"," B"): I nf, (" D"," C"): I nf, (" D"," D"): 0,
(" D"," E"): 5,
 (" E"," A"): I nf, (" E"," B"): I nf, (" E"," C"): I nf, (" E"," D"): I nf,
(" E"," E"): 0
 }

Notice that I nf is a variable that we've defined to be

fl oat("i nf") so that it behaves like infinity (in particular, it is

larger than any other number, so that taking the mi n of

I nf and any other number will always return the other

number!). When a road between two cities is missing, we

represent that by a road of length I nf . In addition, the
distance from a city to itself is necessarily 0.

Recall that in a dictionary like fiveDi st s, we can get the

value associated with a "key" like (" A", " B") by asking for

fi veDi st s[(" A", " B")] .

In addition, we would package list of cities in a Python

list like this:
fi veCi ti es = [" A", " B", " C", " D", " E"]

Part 1 (up to +5 extra-credit points)
short est Pat h
The first part of this bonus problem is to write the a

function called short est Pat h(citi es, di st ances) that takes a list
of cities (e.g., fi veCi ti es) and a dictionary of distances

between these cities with all roads pointing east, and

returns the length of the shortest path from the first city

in the list to the last city in the list.
For example:
I n [1]: short est Pat h(fi veCi ti es, fi veDi st s)
Out[1]: 10

Of course, your function should work for any list of cities

and any distance dictionary (as long as the only finite

distances are the ones on roads that point east).

Your function should be only four lines of Python code

long (not including the def shortest Pat h line, of course). In
particular, it should be of the following form:
def short est Pat h(citi es, di st ances):
 if BLAH:
 ret ur n BLAH BLAH
 el se:
 ret ur n BLAH BLAH BLAH

In addition to recursion, you may wish to use the built-in

mi n function, which can accept an entire list and returns

the minimum element in that list. You may also wish to

use map and l en. If so, you will need to use an

anonymous function (a l ambda expression) within map.

Part 2 (up to +5 extra-credit points)
fi ndShort est Pat h
If you've got the time and inclination, now write a

function called fi ndShort est Pat h(citi es, di st ances) , which

returns a list that contains two items: the shortest path
from the first to the last city in ci ti es, and a list of the

cities on this path. This function can be a bit longer than

your short est Pat h function, but it won't be very long!
I n [1]: fi ndShort est Pat h(fi veCi ti es, fiveDi st s)

Out[1]: [10, [" A", " C", " D", " E"]]

Submit
Submit your function(s) in a file called hw2pr 4. py.

