
Lab 8: Creating the Mandelbrot Set 

Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab8 
on 3/20/2017 

Getting started: execfile and provided files 

Remember you can use run hw8pr1.py instead of closing and reopening 

IPython! 

Because you will create images in this lab, you should grab and 
unzip hw8pr1.zip. 

Be sure to keep the hw8pr1.py file in the hw8pr1 folder; it will need the 

accompanying files. 

Submission: You'll submit your hw8pr1.py file to the submission server. 

 

The Mandelbrot Set 

In this lab you will build a program to visualize and explore the points in and 
near the Mandelbot Set. In doing so, you will have the chance to: 

• Use loops and nested loops to solve complex problems (quite literally!) 

• Develop a program using incremental design, i.e., by starting with a 
simple task and gradually adding levels of complexity 

• Connect with mathematics and other disciplines that use fractal 

modeling 

 

Introduction to for Loops! 

To build some intuition about loops, first write two short functions in 
your hw8pr1.py file: 

• Write a function named mult(c, n) that returns the product c times n, 

but without multiplication. Instead, it should start a value 

(named result) at 0 and repeatedly addthe value of c into that result. 

It should use a for loop to make sure that it adds c the correct number 

https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab8
http://www.cs.hmc.edu/~cs5grad/cs5/hw8pr1.zip
https://www.cs.hmc.edu/twiki/bin/view/CS5/SubmissionPage


of times. After the loop finishes, it should return the result, both 
conceptually and literally.  

 
The value of n will be a positive integer. To get you started, here is a 

snippet of the function that initializes the value of result to 0 and 

builds the loop itself: 
• def mult(c, n): 

•     """ mult uses only a loop and addition  

•          to multiply c by the positive integer n 

•     """ 

•     result = 0 

•     for i in range(n): 

•         # update the value of result here in the loop 

Here are a couple of cases to try: 

In [1]: mult(6, 7) 

Out[1]: 42 

 

In [2]: mult(1.5, 28) 

Out[2]: 42.0 

 

• The next function will build the basic Mandelbrot update step, which 
is z = z**2 + c for some constant c.  

 

To that end, write a function named update(c, n) that starts a new 

value, z, at zero, and then repeatedly updates the value of z using the 

assignment statement z = z**2 + c for a total of n times. In the end, 

the function should return the final value of z. The value of n will be a 

positive integer. Here is the def line and docstring to get you started: 
• def update(c, n): 

•     """ update starts with z=0 and runs z = z**2 + c 

•          for a total of n times. It returns the final z.  

•     """ 

Here are a couple of cases to try: 

In [1]: update(1, 3) 

Out[1]: 5 

 

In [2]: update(-1, 3) 

Out[2]: -1 

 

In [3]: update(1, 10) 

Out[3]: a really big number! 

 



In [4]: update(-1, 10) 

Out[4]: 0 

You'll use these ideas (through a variant of the update function) in building 

the Mandelbrot Set, next: 

 

Introduction to the Mandelbrot Set 

The Mandelbrot set is a set of points in the complex plane that share an 
interesting property that is best explained through the following process: 

• Choose a complex number c . 

• With this c in mind, start with z0 = 0 
• Then repeatedly iterate as follows: 
• zn+1 = zn

2 + c 

The Mandelbrot set is the collection of all complex numbers c such that this 
process does not diverge to infinity as n gets large. 

 

There are other, equivalent definitions of the Mandelbrot set. For example, 
the Mandelbrot set consists of those points in the complex plane for which 
the associated Julia set is connected. Admittedly, this requires defining Julia 

sets, which we won't do here... . 

The Mandelbrot set is a fractal, meaning that its boundary is so complex that 
it can not be well-approximated by one-dimensional line segments, 

regardless of how closely one zooms in on it. There are many available 
references. 

 

The inMSet function 

The next task is to write a function named inMSet(c, n) that accepts a 

complex number c and an integer n. 

This function will return a Boolean: 

• True if the complex number c is in the Mandelbrot set and 

• False otherwise. 

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set


First, we will introduce Python's built-in support for complex numbers. 

Python and complex numbers 

In Python a complex number is represented in terms of its real part x and its 

imaginary part y. The mathematical notation would be x+yi, but in Python 

the imaginary unit is typed as 1.0j or 1j, so that 

c = x + y*1j 

would assign the variable c to the complex number with real part x and 

imaginary part y. 

Unfortunately, x + yj does not work, because Python thinks you're using a 

variable named yj. 

Also, the value 1 + j is not a complex number: Python assumes you mean a 

variable named j unless there is an int or a float directly in front of it. Use 1 

+ 1j instead. 

 

Try it out    Just to get familiar with complex numbers, at the Python 
prompt try 

In [1]: c = 3 + 4j 

 

In [2]: c 

Out[2]: (3+4j) 

 

In [3]: abs(c) 

Out[3]: 5.0 

 

In [4]: c**2 

Out[4]: (-7+24j) 

Python is happy to use the power operator (**) and other operators with 

complex numbers. However, note that you cannot compare complex 
numbers directly—they are 2d points, so there's no "greater than"! Thus, 
you cannot write c > 2 for a complex c (it will TypeError). 

You CAN compare the magnitude, however: abs(c) > 2. Note that the built-

in abs returns the magnitude of a complex number. 

 



Thinking about the inMSet function: 

To determine whether or not a number c is in the Mandelbrot set, you will 

• start with z0 = 0 + 0j and then 
• repeatedly iterate zn+1 = zn

2 + c 

to see if this sequence of z0, z1, z2, etc. stays bounded. 

To put it another way, we need to know whether or not the magnitude of 
these zk go off toward infinity. 

 

Truly determining whether or not this sequence goes off to infinity isn't 
feasible. To make a reasonable guess, we will have to decide on two things: 

• the number of times we are willing to wait for the zn+1 = zn
2 + 

c process to run 
• a value that will represent "infinity" 

We will run the update process n times. The n is the second argument to the 

function inMSet(c, n). This is a value you will experiment with, but 25 is a 

good starting point. 

The value for infinity can be surprisingly low! It has been shown that if the 

absolute value of a complex number z ever gets larger than 2 during the 

update process, then the sequence will definitely diverge to infinity. 

There is no equivalent rule that tells us that the sequence definitely does 
not diverge, but it is very likely it will stay bounded if abs(z) does not exceed 

2 after a reasonable number of iterations, and n is that "reasonable" 

number, starting at 25. 

 

Writing inMSet 

You should copy your update function and change its name to inMSet. 

It's definitely better to copy and change that old function—

do not call update directly. 

To get you started, here is the first line and a docstring for inMSet: 



def inMSet(c, n): 

    """ inMSet accepts 

            c for the update step of z = z**2+c 

            n, the maximum number of times to run that step 

        Then, it returns 

            False as soon as abs(z) gets larger than 2 

            True if abs(z) never gets larger than 2 (for n 

iterations) 

    """ 

The inMSet function should return False if the sequence zn+1 = zn
2 + c ever 

yields a z value whose magnitude is greater than 2. It 
returns True otherwise. 

Note that you will not need different variables for z0, z1, z2, and so on. 

Rather, you'll use a single variable z. You'll update the value of z within a 

loop, just as in update. 

Make sure that you are using return False somewhere inside your loop. You 

will want to return True after the loop has finished all of its iterations! 

 

Check your inMSet function by copying-and-pasting these examples:  

In [1]: c = 0 + 0j         # this one is in the set 

 

In [2]: inMSet(c, 25) 

Out[2]: True 

 

In [3]: c = 3 + 4j      # this one is NOT in the set 

# WARNING: this one will freeze Python if you're not returning 

False 

# _ as soon as _ the magnitude is larger than 2   (inside the if 

or else, inside the loop!) 

 

In [4]: inMSet(c, 25)    

False 

 

In [5]: c = 0.3 + -0.5j    # this one is also in the set 

 

In [6]: inMSet(c, 25) 

Out[6]: True 

 

In [7]: c = -0.7 + 0.3j    # this one is NOT in the set 

 



In [8]: inMSet(c, 25) 

Out[8]: False 

 

 

In [9]: c = 0.42 + 0.2j 

 

In [10]: inMSet(c, 25)      # this one _seems_ to be in the set 

Out[10]: True 

 

In [11]: inMSet(c, 50)      # but at 50 tries, it turns out that 

it's not! 

Out[11]: False                             

Getting too many Trues?  

 
If so, you might be checking for abs(z) > 2 after the for loop finishes. Be 

sure to check inside the loop! 

There is a subtle reason you need to check inside the loop: 

Many values get so large so fast that they overflow the capacity of Python's 
floating-point numbers. When they do, they cease to obey greater-than / 

less-than relationships, and so the test will fail. The solution is to check 
whether the magnitude of z ever gets bigger than 2 inside the for loop, in 

which case you should immediately return False. 

The return True, however, needs to stay outside the loop! 

As the last example illustrates, when numbers are close to the boundary of 
the Mandelbrot set, many additional iterations may be needed to determine 

whether they escape. This is why it is so computationally intensive to build 
high-resolution images of the Mandelbrot set. 

 

Creating images with Python 

Getting started 

 

Try out this code to get started: 

from cs5png3 import *   # You might already have this line @ the 

top... 



 

def weWantThisPixel(col, row): 

    """ a function that returns True if we want 

         the pixel at col, row and False otherwise 

    """ 

    if col%10 == 0  and  row%10 == 0: 

        return True 

    else: 

        return False 

 

def test(): 

    """ a function to demonstrate how 

        to create and save a png image 

    """ 

    width = 300 

    height = 200 

    image = PNGImage(width, height) 

 

    # create a loop in order to draw some pixels 

     

    for col in range(width): 

        for row in range(height): 

            if weWantThisPixel(col, row): 

                image.plotPoint(col, row) 

 

    # we looped through every image pixel; we now write the file 

 

    image.saveFile() 

Save this code, and then run it by typing test(), with parentheses, at the 

Python shell. 

If everything goes well, test() will run through the nested loops and print a 

message that the file test.png has been created. That file should appear in 

the same directory as your hw8pr1.py file. 

Both Windows and Mac computers have nice built-in facilities for looking at 
png-type images; png is short for portable network graphics. For many 

people, double click on the icon of the test.png image, and you will see it. 

(For me, on a Windows machine, opening test.png in a browser was even 

better.) 

Either way, for the above function, it should be all white except for a regular, 

sparse point field, plotted wherever the row number and column number 
were both multiples of 10: 



 

You can zoom in and out of images with the menu options or shortcuts, as 
well. 

 

An image thought-experiment to consider... 

Before changing the above code, write a short comment under 

the test function in your hw8pr1.py file describing how the image would 

change if you changed the line 

if col % 10 == 0 and row % 10 == 0: 

to the line 
if col % 10 == 0 or row % 10 == 0: 

Then, make that change from and to or and try it. On both on Macs and PCs, 

the image does not have to be re-opened: if you leave the previous image 

window open, its image will update automatically. 

Just for practice, you might try creating other patterns in your image by 
changing the test and weWantThisPixel functions appropriately. 

 

Some notes on how the test function works...  

 

There are three lines of the test function that warrant a closer look: 

• image = PNGImage(width, height)     This line of code creates a variable 

of type PNGImage with the specified height and width. The image variable 

holds the whole image! This is similar to the way a single variable—

often called L—can hold an arbitrarily large list of items. When 

information is gathered together into a list or an image or another 



structure, it is called a software object or just an object.  
 

We will build objects of our own design in a couple of weeks; this lab is 
an opportunity to use them without worrying about how to create 
them from scratch. 

 

• image.plotPoint(col, row)     An important property of 

software objects is that they carry around and call functions of their 

own! They do this using the dot . operator. Here, the image object is 

calling its own plotPoint function to place a pixel at the given column 

and row. Functions called in this way are sometimes called methods. 

 

• image.saveFile()     This line creates the new test.png file that holds the 

png image. It demonstrates another method (i.e., function) of the 
software object named image. 

 
 
 

From pixel coordinates to complex coordinates 

The problem 

Ultimately, we need to plot the Mandelbrot set within the complex plane. 
However, when we plot points in the image, we must manipulate pixels in 
their own coordinate system. 

As the testImage() example shows, pixel coordinates start at (0, 0) (in the 

lower left) and grow to (width-1, height-1) in the upper right. In the 
example above, width was 300 and height was 200, giving us a small-ish 

image that will render quickly. 

The Mandelbrot Set, however, lives in the box  
-2.0 ≤ x (or real coordinate) ≤ +1.0 

and 
-1.0 ≤ y (or imaginary coordinate) ≤ +1.0 

which is a 3.0 x 2.0 rectangle. 



So, we need to convert from each pixel's col integer value to a floating-point 

value, x. We also need to convert from each pixel's row integer value to the 

appropriate floating-point value, y. 

The solution 

One function, named scale, will convert coordinates in general. 

So, you'll next write this scale function: 

scale(pix, pixelMax, floatMin, floatMax) 

that can be run as follows: 
In [1]:  scale(150, 200, -1.0, 1.0) 

Here, the arguments mean the following: 

• The first argument is the current pixel value: we are at column 150 or 
row 150 

• The second argument is the maximum possible pixel value: pixels run 
from 0 to 200 in this case 

• The third argument is the minimum floating-point value. This is what 

the function will return when the first argument is 0. 

• The fourth argument is the maximum floating-point value. This is what 
the function will return when the first argument is pixelMax. 

Finally, the return value should be the floating-point value that corresponds 
to the integer pixel value of the first argument. 

The return value will always be somewhere 

between floatMin and floatMax (inclusive). 

This function will NOT use a loop. In fact, it's really just arithmetic. You 
will need to ask yourself 

• How to use the quantity 1.0*pix / pixMax 

• How to use the quantity floatMax - floatMin 

A start to the scale function 

To compute this conversion back and forth from pixel corrdinates to complex 

coordinates, write a function that starts as follows: 

def scale(pix, pixMax, floatMin, floatMax): 

    """ scale accepts 

            pix, the CURRENT pixel column (or row) 



            pixMax, the total # of pixel columns 

            floatMin, the min floating-point value 

            floatMax, the max floating-point value 

        scale returns the floating-point value that 

            corresponds to pix 

    """ 

The docstring describes the arguments: 

• pix, an integer representing a pixel column 

• pixMax, the total number of pixel columns available 

• floatMin, the floating-point lower endpoint of the image's axis 

• floatMax, the floating-point upper endpoint of the image's axis 

Note that there is no pixMin because the pixel count always starts at 0. 

Again, the idea is that scale will return the floating-point value 

between floatMin and floatMax that corresponds to the position of the 

pixel pix, which is somewhere between 0 and pixMax. This diagram illustrates 

the geometry of these values:  

  

Once you have written your scale function, here are some test cases to try 

to be sure it is working: 

In [1]: scale(100, 200, -2.0, 1.0)  # halfway from -2 to 1 

should be -0.5 

Out[1]: -0.5 

 



In [2]: scale(100, 200, -1.5, 1.5)  # halfway from -1.5 to 1.5 

should be 0.0 

Out[2]: 0.0 

 

In [3]: scale(100, 300, -2.0, 1.0)  # 1/3 of the way from -2 to 

1 should be -1.0 

Out[3]: -1.0 

 

In [4]: scale(25, 300, -2.0, 1.0)   # 1/12 of the way from -2 to 

1 should be -1.75 

Out[4]: -1.75 

 

In [5]: scale(299, 300, -2.0, 1.0)  # your exact value may 

differ slightly... 

Out[5]: 0.99 

Note Although we initially described scale as computing x-coordinate (real-

axis) floating-point values, your scale function works equally well for both 

the x- and the y- dimensions. You don't need a separate function for the 

vertical axis! 

 

Visualizing the Mandelbrot set in black and 
white: mset 

This part asks you to put the pieces from the above sections together into a 
function named mset() that computes the set of points in the Mandelbrot set 

on the complex plane and creates a bitmap of them, of size width by height. 

To focus on the interesting part of the complex plane, we will limit the 
ranges of x and y to  
-2.0 ≤ x or real coordinate ≤ +1.0 

and 
-1.0 ≤ y or imaginary coordinate ≤ +1.0 

which is a 3.0 x 2.0 rectangle. 

How to get started?    Start by copying the code from the test function 

and renaming it as mset: 

def mset(): 

    """ creates a 300x200 image of the Mandelbrot set 

    """ 

    width = 300 

    height = 200 

    image = PNGImage(width, height) 



 

    # create a loop in order to draw some pixels 

     

    for col in range(width): 

        for row in range(height): 

            # here is where you will need 

            # to create the complex number, c! 

            # Use scale twice: 

            #   once to create the real part of c (x) 

            #   once to create the imag. part of c (y) 

            # THEN, test if it's in the M. Set: 

            if inMSet(c, n): 

                image.plotPoint(col, row) 

 

    # we looped through every image pixel; we now write the file 

    image.saveFile() 

To build the Mandelbrot set, you will need to change a number of behaviors 
in this function—start where the comment suggests that here is where...: 

• For each pixel col, you need to compute the real (x) coordinate of that 

pixel in the complex plane. Use the variable x to hold this x-coordinate, 

and use the scale function to find it! 

• For each pixel row, you need to compute the imaginary (y) 

coordinate of that pixel in the complex plane. Use the variable y to 

hold this y-coordinate, and again use the scale function to find it! Even 

though this will be the imaginary part of a complex number, it is 

simply a normal floating-point value. 
• Using the real and imaginary parts computed in the prior two steps, 

create a variable named c that holds a complex value with those real 

(x) and imaginary (y) parts, respectively. Recall that you'll need to 

multiply y*1j, not y*j! 

• Finally, your test for which pixel col and row values to plot will 

involve inMSet, the first function you wrote. You'll want to specify a 

value for the argument named n to that inMSet function. I'd start with a 

value of 25 for n. 

Once you've composed your function, try 

In [1]:  mset() 

and check to be sure that the image you get is a black-and-white version of 
the Mandelbrot set, e.g., something like this: 



 

 

Adding features to your mset function 

No magic numbers! 

Magic Numbers are simply literal numeric values that you have typed into 
your code. They're called magic numbers because if someone tries to read 

your code, the values and purpose of those numbers seem to have been 
pulled out of a hat… For example, your mset function might call inMSet(c, 

25) (at least, mine did). A newcomer to your code (and this problem) would 

have no idea what that 25 represented or why you chose that value. 

To keep your code as flexible and expandable as possible, it's a good idea to 
avoid using these "magic numbers" for important quantities in various places 

in your functions. Instead, it's better to collect all of those magic numbers at 
the very top of your functions (after the docstring) and to give them useful 
names that suggest their purpose. It's common, but not required, to use all 

caps for these values—for example, you might have the line 

NUMITER = 25   # of updates 

where NUMITER is the number of iterations to be used by the inMSet function. 

The function call would then look like 
    inMSet(c, NUMITER)  

In addition to being clearer, this makes it much easier to add or change 

functionality in your code—all of the important quantities are defined one 
time and in one place. 

For this part of the lab, move all of your magic numbers to the top of 

the function and give them descriptive names. For example, these five 
lines are a good starting point: 



NUMITER = 25  # of updates, from above 

XMIN = -2.0   # the smallest real coordinate value 

XMAX =  1.0   # the largest real coordinate value 

YMIN = -1.0   # the smallest imag coordinate value 

YMAX =  1.0   # the largest imag coordinate value 

These variables can then be changed in one place in order to alter the 
"window" to the Mandelbrot Set being plotted. 

In the next part, you'll change these values to zoom into the Mandelbrot set. 

 

Zooming in! 

For this part, simply run your mset function with some different values of 

XMAX, XMIN, YMAX, and YMIN to create images of different parts of the 
Mandelbrot Set. 

For example, try the values 

    NUMITER = 25 

    XMIN = -1.3 

    XMAX = -1.0 

    YMIN = .1 

    YMAX = .3 

Then, try this range again, this time using NUMITER = 50 - you'll see that fewer 

points are included because of the additional time to escape... ! 

Another range worth checking out is the "infinite snowmen": 

    NUMITER = 25 

    XMIN = -1.2 

    XMAX = -.6 

    YMIN = -.5 

    YMAX = -.1 

Optionally, feel free to look around to find another set of values that shows 

an interesting piece of the set—and note what they are in a comment in 
your hw8pr1.py file. As a guide, you might consider the suggestions at this M. 

set "atlas" or this page on the "Seahorse Valley". 

Note that the aspect ratio of the image is 3:2 (horizontal:vertical), and if you 
keep this aspect ratio in your ranges, the set will be scaled naturally. 

http://www.miqel.com/fractals_math_patterns/mandelbrot_fractal_guide.html
http://www.miqel.com/fractals_math_patterns/mandelbrot_fractal_guide.html
http://mrob.com/pub/muency/seahorsevalley.html


It will work with different ratios, but to maintain the natural scaling, you 
would have to change the height and width of the image accordingly. Or you 

could compute the height and width, but that's not required for this lab. 

 

Changing colors... 

You don't have to use black and white! 

The image.plotPoint method accepts an optional third argument that 

represents the color of the point you'd like to plot. Here is an example: 

image.plotPoint(col, row, (0,0,255)) 

The third argument here is a list that uses parentheses instead of square-
brackets. Parenthesized lists are called tuples in Python. Tuples are faster to 

access than lists, but their elements cannot be assigned to, so they're often 
used for constants such as colors. 

The three elements of the color tuple above are red, then green, then blue: 

each of those three color components must be an integer from 0 to 255. 
Thus, the tuple above, (0,0,255) is pure blue. 

To change the background of the set, add the lines 

else: 

    image.plotPoint(col,row, (0,0,0)) 

within the loops that run over each col and each row. This will explicitly plot, 

in black, all of the points not in the Mandelbrot Set 

 

Try it out! perhaps first by changing your Mandelbrot set to orange 

(255,175,0) on top of a black background (0,0,0), a combination particularly 
suitable for this week of the year…: 



 

Then, change the colors to something more to your liking! 

Feel free to enlarge your image, too—it will take longer to render, but you'll 

be able to resolve more detail in the result! 

 

You've completed Lab #8 and the hw8pr1.py problem on this week's 

homework—be sure to submit that! 

If you'd like to visualize the different escape velocities or change the 
resolution or perhaps mandelbrotify another image, these next sections 

describe how to add features to your Mandelbrot-set program. They're 
optional, but fun! 

 

Completely Optional: Visualizing escape 
velocities 



These extensions are optional (but fun!)—this first one lets you see the 
relative speeds with which the points in and/or around the Mandelbrot set 

escape to infinity. 

 

Images of fractals often use color to represent how fast points are diverging 

toward infinity when they are not contained in the fractal itself. For this 
problem, create a new version of mset called msetColor . Simply copy-and-

paste your old code, because its basic behavior will be the same. However, 

you should alter the msetColor function so that it plots points that escape to 

infinity more quickly in different colors. 

Thus, have your msetColor function plot the Mandelbrot set as before. In 

addition, however, use at least three different colors to show how quickly 

points outside the set are diverging—this is their "escape velocity." Making 
this change will require a change to your inMSet helper function, as well. We 

suggest that you copy, paste, and rename inMSetso that you  can change the 

new version without affecting the old one. 

There are several ways to measure the "escape velocity" of a particular 
point. One is to look at the resulting magnitude after the iterative updates. 

Another is to count the number of iterations required before it "escapes" to a 
magnitude that is greater then 2. An advantage of the latter approach is that 
there are fewer different escape velocities to deal with. 

Choose one of those approaches—or design another of your own—to 
implement msetColor. 

 

Mandelbrotifying another image 

The png library can read images, too. (As a warning, it's not overly fast in 
converting them to Python lists…) 

The result is that you can use another image's pixels to determine the look 
of the points in (or out) of your Mandelbrot set, e.g., 



 

Here is an example function to show how to read in an image 
(the alien.png image from the pngs folder: 

def example(): 

    """ shows how to access the pixels of an image 

        inputPixels is a list of rows, each of which is a list 

of columns, 

            each of which is a list [r,g,b] 

    """ 

 

    inputPixels = getRGB("./pngs/alien.png") 

    inputPixels = inputPixels[::-1] # the rows are reversed 

 

    height = len(inputPixels) 

    width = len(inputPixels[0]) 

    image = PNGImage(width, height) 

     

    for col in range(width): 

        for row in range(height): 

            if (col%10 < 5) and  (row%10 < 5): # only plot some 

of the pixels 

                image.plotPoint(col, row, inputPixels[row][col]) 

 

    image.saveFile() 

The above code produces the following image: 



 

Try Mandebrotifying this image—or another png you'd like to use… 

 

When you are done—and it can be surprisingly addicting—you are done with 
lab! 

Be sure to submit your hw8pr1.py file…. 
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