
Gold Problem 2: Conversions and

Compressions

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverCon
versionsGold on 3/17/2017

65 points (individual or pair) filename: hw4pr2.py

These problems are all about the base - of numbers' representation - and

converting or computing with them.

To begin, this problem will ask you to convert from base 10 to other bases
and vice versa. Because bases higher than base 10 require that new "digits"

be introduced, we'll stick to bases that are between 2 and 10.

Function #1: numToBaseB(N, B)

Write a Python function called numToBaseB(N, B) that takes as input a non-

negative integer N and a base B (between 2 and 10 inclusive); it should
returns a string representing the number N in base B.

You don't need to check to be sure that B is between 2 and 10 -- we will

ensure those are the only values we test.

Also, remember that integer-division (no fractional portions) is what's

needed here. In Python, integer division rounds down and uses //, e.g.,

18//7 == 2

Here are some sample runs -- be sure the first two work! Several thoughts
and hints are below:

In [1]: numToBaseB(3116, 9)

Out[1]: '4242'

In [2]: numToBaseB(141474, 8)

Out[2]: '424242'

https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverConversionsGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverConversionsGold

In [3]: numToBaseB(42, 8)

Out[3]: '52'

In [4]: numToBaseB(42, 5)

Out[4]: '132'

In [5]: numToBaseB(42, 10)

Out[5]: '42'

In [6]: numToBaseB(42, 2)

Out[6]: '101010'

In [7]: numToBaseB(4, 2)

Out[7]: '100'

In [8]: numToBaseB(4, 3)

Out[8]: '11'

In [9]: numToBaseB(4, 4)

Out[9]: '10'

In [10]: numToBaseB(0, 4)

Out[10]: '' # notice the empty string for an

input N of 0 !

In [11]: numToBaseB(0, 2)

Out[11]: '' # notice the empty string for an

input N of 0 !

Thoughts:

• Remember, that your function is returning a string, and not a numeric
value!

• The numToBin example from Thursday's slides is probably the best place

to start...
• Ask yourself... what has to change in order to output base B instead of

base 2

Hints:

• Your code must output the empty string when the input value of N is 0.

(This avoids leading zeros!)
• Here are the Python functions for converting back and forth between

strings and numbers:

o str(x) returns the string representation of the number

(integer) x.

o int(s) returns the integer value of the string s. If s doesn't

represent an int, Python stops with an error.

Function #2: baseBToNum(S, B)

Naturally, we'd like to do the opposite conversion as well!

To that end, write a Python function called baseBToNum(S, B) that takes as

input a string S and a base B where S represents a number in base B where

B is between 2 and 10 inclusive. baseBToNum should then return an integer in

base 10 representing the same number as S.

You don't need to check to be sure that B is between 2 and 10 -- we will

ensure those are the only values we test.

Here are some sample runs - be sure the first two work (they're the largest
examples we'll use):

In [1]: baseBToNum('5733', 9)

Out[1]: 4242

In [2]: baseBToNum('1474462', 8)

Out[2]: 424242

In [3]: baseBToNum('222', 4)

Out[3]: 42

In [4]: baseBToNum("101010", 2)

Out[4]: 42

In [5]: baseBToNum("101010", 3)

Out[5]: 273

In [6]: baseBToNum("101010", 10)

Out[6]: 101010

In [7]: baseBToNum("11", 2)

Out[7]: 3

In [8]: baseBToNum("11", 3)

Out[8]: 4

In [9]: baseBToNum("11", 10)

Out[9]: 11

In [10]: baseBToNum("", 10)

Out[10]: 0 # the empty string should

return 0

Thoughts:

• Remember, that your function is returning a number, and taking a
string as its input S!

• The binToNum example from Thursday's slides is probably the best place

to start... .
• Again, the key is to ask yourself... what has to change in order to

output base B instead of base 2?

Hints:

• Your baseBToNum function should output 0 when S is the empty string.

• As usual, the rightmost character of the string will be the "one's
column," the least significant digit of the number in base B.

• But this means that the value of the rightmost character is simply int(

S[-1])!

• Here are the Python functions for converting back and forth between
strings and numbers:

o str(x) returns the string representation of the number

(integer) x.

o int(s) returns the integer value of the string s. If s doesn't

represent an int, Python stops with an error.

Function #3: baseToBase(B1,B2,s_in_B1)

Now, we can assemble what we've written to write a function called

called baseToBase(B1,B2,s_in_B1) that takes three inputs: a base B1, a

base B2 (both of which are between 2 and 10, inclusive) and s_in_B1, which is

a string representing a number in base B1.

Then, your baseToBase function should return a string representing the same

number in base B2.

Here is some sample input and output:

In [1]: baseToBase(2, 10, "11") # 11 in base 2 is 3 in base

10...

Out[1]: '3'

In [2]: baseToBase(10, 2, "3") # 3 in base 10 is 11 in base

2...

Out[2]: '11'

In [3]: baseToBase(3, 5, "11") # 11 in base 3 is 4 in base

5...

Out[3]: '4'

In [4]: baseToBase(2, 3, '101010')

Out[4]: '1120'

In [5]: baseBToNum('1120', 3)

Out[5]: 42

In [6]: baseToBase(2, 4, '101010')

Out[6]: '222'

In [7]: baseToBase(2, 10, '101010')

Out[7]: '42'

In [8]: baseToBase(5, 2, '4321')

Out[8]: '1001001010'

In [9]: baseToBase(2, 5, '1001001010')

Out[9]: '4321'

Thoughts:

• Don't rewrite any conversions at all! Instead, convert to decimal and
then back to the desired final base!

Hints:

• First use baseBToNum to get the ordinary, decimal number for s_in_B1.

Give it a name.
• Then, use the numToBaseB function to convert that value to the

appropriate base!

Function #4: add(S,T)

Here's a short problem that puts what you've written to use!

Write a function, called add(S,T) , that takes two binary strings S and T as

input and returns their sum, also in binary.

We encourage you to do this by converting the two binary strings to two

base 10 numbers, add the two numbers, and then convert the resulting sum
back into base 2!

Here is some sample input and output:

In [1]: add("11", "1")

Out[1]: '100'

In [2]: add("11", "100")

Out[2]: '111'

In [3]: add("110", "11")

Out[3]: '1001'

In [4]: add("11100", "11110")

Out[4]: '111010'

In [5]: add("10101", "10101")

Out[5]: '101010'

Function #5: addB(S,T)

Above, add shows one way of adding two binary numbers: first convert them

to base 10, add those two base 10 numbers, and then convert the result
back to binary.

In this problem, however, you will implement a different, more direct,
method for adding two binary numbers, using the "elementary-school"
algorithm we used in class:

 101110

 100111

which, after the addition would look like this:

 111

 101110

 100111

 1010101

Here the "carry" bits are in blue.

For this problem, write a Python function called addB(S,T) that takes two

strings as input. These strings are the representations of binary numbers.

Your addB function should return a new string representing the sum of the

two input strings.

The sum needs to be computed using the "elementary-school" binary
addition algorithm, shown above and in class, and not using base

conversions. That is - this is purely syntactic addition!

Hints

• You'll need at least two base cases. A base-case question to consider

is what if S had no characters, but T still did have characters - what

would be the correct string to return?
• The "carry" case is another tricky part of this problem.

• When you need to carry, you will have THREE strings to add: (1) the
rest of S (S[:-1]), (2) the rest of T, and the additional carry string,

which is simply '1'.

• The key is to use addB twice: once to add the carry string with one of

the two "rests," and a second time to add the first result to the other
of the two "rests"!

Here's a starting point:

def addB(S,T):

 """ docstring - please include """

 # base cases!

 # There will be four recursive cases - here is the first

one:

 if S[-1] == '0' and T[-1] == '0':

 return addB(S[:-1], T[:-1]) + '0' # 0 + 0 == 0

 # three more recursive cases still to specify...

Here is some sample input and output:

In [1]: addB("11100", "11110")

Out[1]: '111010'

In [2]: addB("10101", "10101")

Out[2]: '101010'

In [3]: addB("11", "1")

Out[3]: '100'

In [4]: addB("11", "100")

Out[4]: '111'

Functions #6 and #7: compress(I

) and uncompress(C):

Run-length image compression

Up to now we've explored how numbers are symbols are represented in

binary, but in this problem we'll explore the representation of images using
0's and 1's.

For this part you'll write two functions, compress(I) and uncompress(C),

along with one or more helper functions. You should put these functions
solutions in the same file, hw4pr2.py along with the others above.

Let's begin by considering just 8-by-8 black-and-white images such as the

one below:

Each cell in the image is called a "pixel". A white pixel is represented by the
digit 0 and a black pixel is represented by the digit 1. The first digit

represents the pixel at the top left corner of the image. The next digit
represents the pixel in the top row and the second column. The eighth bit
represents the pixel at the right end of the top row. The next bit represents

the leftmost pixel in the second row and so forth. Therefore, the image
above is represented by the following binary string of length 64:

'101010100101010110101010010101011010101001010101101010100101010

1'

Another way to represent that same string in python is
'1010101001010101'*4

The background story

So now what? Here's the gratuitous background story: You've been hired by

MASA ("Mudd Air and Space Administration"). MASA has a deep space
satellite that takes 8-by-8 black-and-white images and sends them back to
earth as binary strings of 64 bits as described above. In order to save

precious energy required for transmitting data, MASA would like to
"compress" the images sent into a format that uses as few bits as possible.
One way to do this is to use the run-length encoding algorithm.

Imagine that we have an image that looks like this, for example:

Using our standard sequence of 64 bits, this image is represented by a
binary string beginning with 16 consecutive 0's (for two rows of white pixels)

followed by 16 consecutive 1's (for two rows of black pixels) followed by 16
consecutive 0's followed by 16 consecutive 1's.

Run-length encoding (which, by the way, is used as part of the JPEG image

compression algorithm) says: Let's represent that image with the code "16

white, 16 black, 16 white, 16 black". That's a much shorter description than
listing out the sequence of 64 pixels "white, white, white, white, ...".

Run-length encoding

In general, our run-length coding represents an image by a sequence (called
a "run-length sequence") of 8-bit bytes:

• The first bit of each byte represents the bit that will appear next in the

image, either 0 or 1.

• The final seven bits contain the number in binary of those bits that

appear consecutively at the current location in the image.

Notice that this run-length encoding will result in a relatively small number
of bits to represent the 4-stripe image above. However, it will do very badly
(in terms of the number of bits that it uses) in representing the

checkerboard image that we looked at first. In general, run-length encoding
does a good job "compressing" images that have large blocks of solid color.
Fortunately, this is true of many real-world images, such as the images that

MASA gets, which are mostly white with a few black spots representing
celestial bodies.

Function #6: compress(S)

Whew! So here's your task.

Write a function called compress(S) that takes a binary string S of length less

than or equal to 64 as input and returns another binary string as output. The
output binary string should be a run-length encoding of the input string, as
described above.

You may need a helper function or two - you may name these whatever you
like. Also, you may want to copy a function or two from the previous hw
problem and/or from the lab and/or the in-class "Quiz" this week!

Function #7: uncompress(C)

Next, write a function called uncompress(C) that "inverts" or "undoes" the

compressing in your compress function.

That is, uncompress(compress(S)) should give back S .

Again, helper functions are OK, as is using this week's previous problems

and/or lab code you've written.

Here are a couple of examples of compress and uncompress in action:

In [1]: compress(64*'0')

Out[1]: '01000000'

In [2]: uncompress('10000101') # 5 1's

Out[2]: '11111'

In [3]: compress('11111')

Out[3]: '10000101'

In [4]: Stripes = '0'*16 + '1'*16 + '0'*16 + '1'*16

In [5]: compress(Stripes)

Out[5]: '00010000100100000001000010010000'

In [6]: uncompress('00010000100100000001000010010000')

Out[6]:

0000000000000000111111111111111100000000000000001111111111111111

Submitting

Be sure to submit your working functions as hw4pr2.py at the submission site.

Not imaged out?

Try the image-processing extra credit, if you'd like!

https://www.cs.hmc.edu/twiki/bin/view/CS5/FunWithImagesGold2010

	Gold Problem 2: Conversions and Compressions
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverConversionsGold on 3/17/2017
	65 points (individual or pair) filename: hw4pr2.py
	Function #1: numToBaseB(N, B)
	Function #2: baseBToNum(S, B)
	Function #3: baseToBase(B1,B2,s_in_B1)
	Function #4: add(S,T)
	Function #5: addB(S,T)
	Functions #6 and #7: compress(I) and uncompress(C):
	Run-length image compression
	The background story
	Run-length encoding

	Function #6: compress(S)
	Function #7: uncompress(C)
	Submitting

