
Problem 2, Part 2: Connect Four: The Player class

[40 points; individual or pair]

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5

/Connect4Ply on 3/15/17

Please include this Player class in the same hw11pr2.py file that has the

previous part's Board class.

The Player class—a preview

This problem asks you to write another Connect-Four-related class
named Player. Your Player class will evaluate Connect-Four boards and

decide where to move next. The basic approach is as follows:

• Look at each column on the board. Give each column a numeric score:
o -1.0 represents a column that is full (so no move can be made

there)
o 0.0 represents a column that, if chosen as the next move, will

result in a loss for the the player.

o 50.0 represents a column that, if chosen as the next move, will
produce neither a win nor a loss for the player (at least not in
the near future…)

o 100.0 represents a column that, if chosen as the next move, will
result in a win for the player.

• After obtaining a list of scores in the above format, one score per

column, the computer player will choose a move by finding the column
with the maximum score and playing there. If there are ties (and there
will be), one of these tie-breaking strategies is used:

o 'LEFT' pick the leftmost high score
o 'RIGHT' pick the rightmost high score
o 'RANDOM' pick one of the high scores randomly

The more detailed descriptions below will provide a skeleton and a couple of
hints for the design of your Player class and how to test it.

The Player class

Your Player class should have at least three data members:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4Ply
https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4Ply

• A one-character string representing the checker, either 'X' or 'O',

being used by the connect-four Player. Warning!: remember that 'O' is

capital-o, not zero. One reasonable name for this data member might
be self.ox .

• A string, either 'LEFT', 'RIGHT', or 'RANDOM', representing

the tiebreaking type of the player. This is the name for one of the

three strategies described above. One reasonable name for this data
member might be self.tiebreak.

• A nonnegative integer representing how many moves into the future

the player will look to evaluate possible moves. One reasonable name
for this data member might be self.ply because one turn of game play

is sometimes called a ply. The other legal value for self.ply is the

string 'HUMAN', which will indicate that the object represents a
human player. (It will ask for a move from the user in this case.)

Methods required for the Player class :

__init__

• __init__(self, ox, tiebreak, ply):

This is a constructor for Player objects that takes three arguments.

(Remember that self refers to the object being constructed and that it

is not explicitly passed into the constructor.) The constructor first
takes in a one-character string ox: this will be either 'X' or 'O'.

Second, it takes in tiebreak, a string representing the tiebreaking type

of the player. It will be one of 'LEFT', 'RIGHT', or 'RANDOM'. The third

argument, ply, will be a nonnegative integer representing the number

of moves that the player should look into the future when evaluating

where to go next. The argument ply may also be the string 'HUMAN',

meaning that the object will represent a human player. (It will ask for
a move from the user in this case.)

Inside the constructor, you should set the values of the data members of the
object. There's not much else to do!

__repr__

• __repr__(self):

This method returns a string representing the Player object that calls

it. The string should simply represent the three important
characteristics of the object: its checker string, its tiebreaking type,

and its ply.

Testing init and __repr__:
In [1]: p = Player('X', 'LEFT', 2)

In [2]: p

Out[2]: Player for X

 with tiebreak: LEFT

 and ply == 2

In [3]: p = Player('O', 'RANDOM', 'HUMAN')

In [4]: p

Out[4]: Player for O

 with tiebreak: RANDOM

 and ply == HUMAN

You might wonder why an object of type Player even needs a tiebreaking

type if it is of 'HUMAN' ply… It really doesn't—the tiebreaking type will be

ignored in that case.

oppCh

• oppCh(self):

This method should return the other kind of checker or playing piece,
i.e., the piece being played by self's opponent. In particular, if self is

playing 'X', this method returns 'O' and vice-versa. Just be sure to

stick with capital-O! This method is easy to test:

In [1]: p = Player('X', 'LEFT', 3)

In [2]: p.oppCh()

Out[2]: 'O'

In [3]: Player('O', 'LEFT', 0).oppCh()

Out[3]: 'X'

scoreBoard

• scoreBoard(self, b):

This method should return a single float value representing the score

of the argument b, which you may assume will be an object of

type Board. This should return 100.0 if the board b is a win for self. It

should return 50.0 if it is neither a win nor a loss for self, and it should

return 0.0 if it is a loss for self (i.e., the opponent won).

Testing scoreBoard
You should test all three possible output scores—here is an example of how

to test the first case:
In [1]: b = Board(7,6) # must be width, height

In [2]: b.addMove(0,'X')

In [3]: b.addMove(0,'X')

In [4]: b.addMove(0,'X')

In [5]: b.addMove(0,'X')

In [6]: p = Player('X', 'LEFT', 0)

In [7]: b # just to check...

| | | | | | | |

| | | | | | | |

|X| | | | | | |

|X| | | | | | |

|X| | | | | | |

|X| | | | | | |

 0 1 2 3 4 5 6

In [8]: p.scoreBoard(b)

Out[6]: 100.0

tiebreakMove

• tiebreakMove(self, scores):

This method accepts scores, which will be a nonempty list of floating-

point numbers. If there is only one highest score in that scores list, this

method should return its COLUMN number, not the actual score!

Note that the column number is the same as the index into the
list scores. If there is more than one highest score because of a tie,

this method should return the COLUMN number of the highest score

appropriate to the player's tiebreaking type.

Thus, if the tiebreaking type is 'LEFT', then tiebreakMove should return

the column of the leftmost highest score (not the score itself). If the

tiebreaking type is 'RIGHT', then tiebreakMove should return the column of

the rightmost highest score (not the score itself). And if the tiebreaking type
is 'RANDOM', then tiebreakMoveshould return the column of the a randomly-

chosen highest score (yet again, not the score itself).

Testing tiebreakMove
You should test for all three tiebreaking types. Here are two tests:

In [1]: scores = [0, 0, 50, 0, 50, 50, 0]

In [2]: p = Player('X', 'LEFT', 1)

In [3]: p2 = Player('X', 'RIGHT', 1)

In [4]: p.tiebreakMove(scores)

Out[4]: 2

In [5]: p2.tiebreakMove(scores)

Out[5]: 5

scoresFor

• scoresFor(self, b):

This method is the heart of the Player class! Its job is to return a list of

scores, with the cth score representing the "goodness" of the board

given as b after the player moves to column c. To make the program

play well, "goodness" is measured by what happens in the game
after self.ply moves.

Admittedly, that is a lot to handle! So, here is a breakdown:

1. The method first creates a list of all zeros, with length equal to the
number of columns in the board b.

2. It then assigns a -1 for each column that is full.

3. If the Player object's ply is 0, no moves are made, and the scores

should all be set "appropriately"—be careful, because this can involve
several cases, depending on whether the game is already over or not—

and the order in which you check matters!
4. But if the Player object's ply is greater than 0 and the game isn't over,

it makes a trial move into each of the non-full columns of the board

(using the methods in Board). For each column, it figures out what

scores an opponent would give the resulting board using ply-1 and

computes its final score based on the opponent's evaluation. To do
this, the easiest thing is to make a new opponent (an object from this

same Player class!!) whose ox is the opposite of yours and

whose ply is one less than yours. Let this opponent recursively score

the board. Your score for your choice of move will now be computed

simply from the opponents score. Finally, after you've done this for
every possible move that you could make, you return the complete list
of scores. While this function is the "brains" of the entire program, it's

actually quite short. (Our sample implementation is only about 20 lines
long.)

Testing scoresFor

Here is a case that will test almost all of your scoresFor method.

The >>> prompt has been removed at the top for easy copy-and-paste into

your Python window:

b = Board(7,6) # must be width, height

b.setBoard('1211244445')

In [1]: b

| | | | | | | |

| | | | | | | |

| | | | |X| | |

| |O| | |O| | |

| |X|X| |X| | |

| |X|O| |O|O| |

 0 1 2 3 4 5 6

0-ply lookahead doesn't see threats...

In [1]: p = Player('X', 'RIGHT', 0)

In [2]: p.scoresFor(b)

Out[2]: [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]

The tiebreak method doesn't matter...

In [1]: p = Player('X', 'LEFT', 0)

In [2]: p.scoresFor(b)

Out[2]: [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]

1-ply lookahead sees immediate wins

(if only it were 'O's turn!)

In [1]: p = Player('O', 'LEFT', 1)

In [2]: p.scoresFor(b)

Out[2]: [50.0, 50.0, 50.0, 100.0, 50.0, 50.0, 50.0]

2-ply lookahead sees possible losses

('X' better go to column 3...)

In [1]: p = Player('X', 'LEFT', 2)

In [2]: p.scoresFor(b)

Out[2]: [0.0, 0.0, 0.0, 50.0, 0.0, 0.0, 0.0]

3-ply lookahead sees set-up wins

('X' sees that col 3 is a win!)

In [1]: p = Player('X', 'LEFT', 3)

In [2]: p.scoresFor(b)

Out[2]: [0.0, 0.0, 0.0, 100.0, 0.0, 0.0, 0.0]

At 3-ply, 'O' does not see any danger

In [1]: p = Player('O', 'LEFT', 3)

In [2]: p.scoresFor(b)

Out[2]: [50.0, 50.0, 50.0, 100.0, 50.0, 50.0, 50.0]

At 4-ply, 'O' does see the danger!

again, too bad it's not 'O's turn...

In [1]: p = Player('O', 'LEFT', 4)

In [2]: p.scoresFor(b)

Out[2]: [0.0, 0.0, 0.0, 100.0, 0.0, 0.0, 0.0]

nextMove

• nextMove(self, b):

This method accepts b, an object of type Board, and returns an

integer—namely, the column number that the calling object (of

class Player) chooses to move to. This is the primary interface

to Player, but it is really just a "wrapper" for the heavy lifting done by

the other methods, particularly scoresFor.

Thus, if the self.ply data member is numeric (and thus not 'HUMAN'),

then nextMove should use scoresFor and tiebreakMove to return its move. On

the other hand, if the ply is 'HUMAN', then this method should simply ask the

user to enter a move. In this latter case, it is simply acting as a software

place-holder.

Testing nextMove

This continues the previous example…again, the >>> have been removed at

the top for easy copy-and-paste into your Python window:

b = Board(7,6) # must be width, height!!

b.setBoard('1211244445')

In [1]: b

| | | | | | | |

| | | | | | | |

| | | | |X| | |

| |O| | |O| | |

| |X|X| |X| | |

| |X|O| |O|O| |

 0 1 2 3 4 5 6

In [2]: p = Player('X', 'LEFT', 1)

In [3]: p.nextMove(b)

Out[3]: 0

In [4]: p = Player('X', 'RIGHT', 1)

In [5]: p.nextMove(b)

Out[5]: 6

In [6]: p = Player('X', 'LEFT', 2)

In [7]: p.nextMove(b)

Out[7]: 3

the tiebreak does not matter

if there is only one best move...

In [1]: p = Player('X', 'RIGHT', 2)

In [2]: p.nextMove(b)

Out[2]: 3

again, the tiebreak does not matter

if there is only one best move...

In [1]: p = Player('X', 'RANDOM', 2)

In [2]: p.nextMove(b)

Out[2]: 3

human players are interactive

In [1]: p = Player('X', 'LEFT', 'HUMAN')

In [2]: p.nextMove(b)

Where would you like to place a checker? 2

Out[2]: 2

Putting it all together: Board's playGame method

playGame

Add the following method to your Board class in hw11pr2.py !

• playGame(self, p1, p2): This method wraps everything into a game of

Connect Four—this time, using computer players of type Player!

This playGame method takes in two objects, p1 and p2, of type Player. It

then alternates their moves (calling nextMove) in the usual way, printing

out the updated board after each move. Note that if one (or both) of
the computer players has ply equal to 'HUMAN', the game will pause and

prompt the user to choose a move for that player, as was described
in nextMove. If both are pure computer players, however, they will

quickly finish their game. See below for a deterministic (non-random)

example that you can use to test your playGame method:

Testing playGame
A deterministic example:

In [1]: p2 = Player('O', 'LEFT', 0)

In [2]: p1 = Player('X', 'LEFT', 0)

In [3]: b = Board(7,6) # must be width, height!

In [4]: b.playGame(p1,p2)

Lots of boards omitted...

|O|O|O| | | | |

|X|X|X| | | | |

|O|O|O| | | | |

|X|X|X| | | | |

|O|O|O| | | | |

|X|X|X|X| | | |

 0 1 2 3 4 5 6

X wins!

That's it…You've built your Connect Four AI!

Please submit this file as hw11pr2.py to the submission Page in the usual way.

https://www.cs.hmc.edu/twiki/bin/view/CS5/SubmissionPage

	Problem 2, Part 2: Connect Four: The Player class [40 points; individual or pair]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4Ply on 3/15/17
	The Player class—a preview
	The Player class
	Putting it all together: Board's playGame method

