
Problem 2, part 1: Connect 4 Board [25

points; individual or pair]
Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4B
oardBlack on 3/13/17

Overview: You'll write two classes for Problem 2:

• a Boar d class (this part of the problem) and

• a Pl ayer class (the next part of the problem)
You'll place both of these classes into a file named

hw11pr 2. py file and then submit it in the usual way to the

NewSubmissionSite2014

The Pl ayer class is described in the second part of this

problem.

Note: The CS 5 "Black" version of

this problem is not identical to the CS 5 "Gold" version.

Please do the version for the section in which you are

enrolled!

Connect Four is a variation of tic-tac-toe played on a
rectangular board. Typically there are 6 rows and 7

columns, although your code will work for any number of

rows and columns.

The game is played by two players, alternating turns,
with each trying to place four checkers in a row vertically,

horizontally, or diagonally. Because the board stands

vertically and the checkers are subject to gravity, a

checker may only be placed at the top of one of the

currently existing columns (or start a new column).

The Boar d class—a preview

https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4BoardBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4BoardBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/NewSubmissionSite2014

In this problem, you will need to create a class named

Boar d that implements some of the features of the

Connect Four game. The Boar d class will have three data
members: a two-dimensonal list (a list of lists) containing

characters to represent the game area, and a pair of

variables holding the number of rows and columns on the

board (6 rows and 7 columns is standard, but your Boar d

datatype will be able to handle boards of any size). The

details of the Boar d class appear below.

The Boar d class
You will probably want to store the representation of the

board as a two-dimensional list/array of characters. You
should represent an empty slot by ' ', the space

character. You should represent player X's checkers with

an 'X' (the capital x character) and player O's checkers

with an 'O' (the capital o character).

Methods required for the Boar d class

• __i nit __(sel f, wi dt h=7, hei ght =6) : This is a constructor for

Boar d objects that (in addition to sel f) takes two

named arguments, one for the number of rows and

one for the number of columns. It uses the default

number of columns and rows (7 and 6, respectively)
in the event that the user does not specify those

arguments. Inside the constructor, you should set

the values of the data members of the object,

including initializinng the two-dimensional array of

characters to contain all ' 's (space characters).
Note: It is tempting to initialize the board using the

multiplication operator. For example, a 2 by 3 array

of 0's could be constructed this way: [[' '] * 3] * 2.

Unfortunately, this looks nice but doesn't work
because Python actually creates multiple copies of

the same row this way. Thus, changing an element

in one row will change the corresponding entries in

all of the rows! Instead, use a strategy analogous to

the way we constructed a blank board in the game of
Life.

• __r epr __(sel f): This method returns a string (it does not

pri nt a string) representing the Boar d object that calls

it. Basically, each "checker" takes up one space, and

all columns are separated by vertical bars (|). The

columns are labeled at the bottom. Note that on
some computers, the default font is a "variable

width" font that makes the "X" and "O" symbols

wider than the space symbol. This will make your

board look messy. To fix this, choose a "Courier" or
"Courier New" font in your preferences (usually

found in the "Edit" menu).

Here is an example of how your board should look:
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | O| | O| | |
 | | X| X| X| O| | |

 0 1 2 3 4 5 6

See the sample run below for more examples of what a

board should look like as a game is played. Remember

that __r epr __ returns a string but doesn't actually print

anything! The symbol \ n can be placed in a string to

cause a newline (return to beginning of next line). Here's

an example:
I n [1]: f oo = "I\ nli ke\ nspam"

I n [2]: f oo
Out[2]:'I\ nli ke\ nspam'

I n [3]: pri nt f oo
I
li ke
spam

• al l ows Move(sel f, col): This method should return Tr ue if

the calling Boar d object can allow a move into column
c (because there is space available). It returns Fal se

if c does not have space available or if it is not a

valid column. Thus, this method should check to be

sure that c is within the range from 0 to the last

column and make sure that there is still room left in

the column!

• i sFull(self): This method should return Tr ue if the calling
Boar d object has no more moves left available at all.

Otherwise, it should return Fal se. Note that you can

use all ows Move as a helper to this one!

• addMove(sel f, col, ox) : This method should add an ox

checker, where ox is a variable holding a string that

is either " X" or " O" , into column col . Note that the

code will have to find the highest row number

available in the column col and put the checker in

that row. The highest row number available is the
highest index with a space character ' ' in the column

c. Notice that the highest row number corresponds to

the lowest physical row on the board.

• set Boar d(sel f, move_stri ng) : This method helps you (and

us!) to test your Connect-Four Board class. Code is
provided below, if you'd like to use it—or adapt it to

suit your representation of the game. But be sure to

include a method that has this functionality in your

class!

• del Move(sel f, col): This method should do the "opposite"

of addMove. That is, it should remove the top checker

from the column col . If the column is empty, then
del Move should do nothing. This function may not

seem crucial right away, but it is very useful in the

next problem in which you implement your own

Connect Four AI. It's also useful if you implement

"undo."

• wi nsFor(sel f, ox) : This method should return Tr ue if the
given checker, ' X' or ' O' , held in ox, has won the

calling Boar d. It should return Fal se othwerwise.

Important Note: you need to check if the player

has won horizontally, vertically, or diagonally (and

there are two different directions for a diagonal win).

• host Ga me(sel f) This is a method that, when called from a
Connect Four board object, will run a loop allowing

the user(s) to play a game. See below for an

example user interface.

Here is our code for set Boar d—please use this or
something equivalent that works with your class:
 def set Boar d(sel f, moveStri ng):
 """ Accept s a stri ng of col umns and pl aces
 alt ernati ng checkers i n t hose col umns,
 st arti ng wi t h ' X' .

 For exampl e, call b. set Board(' 012345')

 t o see ' X' s and ' O' s alt ernat e on t he
 bott om r ow, or b. set Boar d(' 000000') t o
 see t hem al t ernat e i n t he l eft col umn.

 moveStri ng must be a stri ng of i nt egers
 """
 next Ch = ' X' # st art by pl ayi ng ' X'
 f or col Di git i n moveStri ng:
 col = i nt(col Di git)
 if 0 <= col < self. wi dt h:
 self. addMove(col , next Ch)
 if next Ch == ' X' :
 next Ch = ' O'
 el se:
 next Ch = ' X'

Continue with this file for the next part of the
problem (the Pl ayer class)
You'll continue developing this Connect-Four application
in the second part of this problem. There, you'll

implement an AI for the game in the Pl ayer class.

Sample run of host Ga me
Sample run:

I n [1]: b = Boar d(7, 6)

I n [2]: b. host Ga me()

Wel come t o Connect Four!

https://www.cs.hmc.edu/twiki/bin/view/CS5/Connect4Ply

 0 1 2 3 4 5 6

X' s choi ce: 3

			X			

 0 1 2 3 4 5 6

O' s choi ce: 4

			X	O		

 0 1 2 3 4 5 6

X' s choi ce: 2

| | | | | | | |

		X	X	O		

 0 1 2 3 4 5 6

O' s choi ce: 4

				O		
		X	X	O		

 0 1 2 3 4 5 6

X' s choi ce: 1

				O		
	X	X	X	O		

 0 1 2 3 4 5 6

O' s choi ce: 2

		O		O		
	X	X	X	O		

 0 1 2 3 4 5 6

X' s choi ce: 0

X wi ns -- Congr at ul ati ons!

		O		O		
X	X	X	X	O		

 0 1 2 3 4 5 6

