
CS100: Project 2

Revision Date: October 2, 2015

Preamble

There Shakespeare, on whose forehead climb
The crowns o the world; oh, eyes sublime
With tears and laughter for all time! – Elizabeth Barrett Browning, A Vision of Poets

Before you submit this project you must ensure that it runs without failure on a Linux distribution.

Words!

Your task is to read in the entire corpus of Shakespeare’s Plays and Sonnets and print out the individual
words, each word processed slightly, in sorted order.

The corpus can be obtained with this command:

wget troll.cs.ua.edu/cs100/python/projects/shakespeare.txt

You will accomplish this task with two programs, one a python program that you write and the other a
one-line shell script, that calls your python program and pipes its output to the sort utility. The python
program will be named tokenize.py while the shell script will be named shakesort.

An Example

Suppose the file shakespeare.txt contained the single line. famously spoken by Juliet in Romeo and Juliet:

"O Romeo, Romeo! wherefore art thou Romeo?"

Then, running the command:

$ shakesort

should produce the following output:

art

o

romeo

thou

wherefore



What are words?

To obtain words from a file of text (shakespeare.txt is a file of text), one tokenizes the file. Tokenizing a file
means repeatedly reading tokens from the file, where each token is composed of a sequence of consecutive
non-whitespace characters. Thus, tokenizing the line:

"O Romeo, Romeo! wherefore art thou Romeo?"

would produce the following tokens:

"O

Romeo,

Romeo!

wherefore

art

thou

Romeo?"

As previously stated, your program should strip away punctuation from each token and reduce all upper-case
letters to lower case.

When completed, you should be able to run your program like this:

$ python tokenize.py wherefore.txt

which should produce the following output:

o

romeo

romeo

wherefore

art

thou

romeo

Note that your program neither sorted the output nor removed duplicates. These tasks are left for the
second phase of the project. Note also that the file name wherefore.txt was passed in as a command-line
argument. You can read about how to handle command-line in the chapter entitled “Input and Output” in
the textbook.

Reading from files

Once you get the name of the file from the command line, you will need to tokenize the text in the given
file. To read the tokens in a file, you should use the Scanner class, which you can retrieve with:

wget http://troll.cs.ua.edu/cs100/python/projects/scanner.py

Run this command in the same directory as your project files. Read the chapter entitled “More on Input”
in the textbook on how to read in a file of tokens. Note that the readtoken function of a Scanner object
will break up a quoted string into individual tokens, but the first token will begin with a double quote.
Symmetrically, the last token of the string will also contain a double quote.

2



Processing a token

One processing task is to remove all characters that are not letters. To give you some help on this task, here
is some code that replaces each ’x’ character in a token with a ’y’.

result = ""

for i in range(0,len(token),1): # look at each character

if (token[i] == ’x’): # it matches!

result = result + ’y’ # so add in the replacement

else: # it doesn’t match

result = result + token[i] # so add in that character

The code for replacing capital letters would be similar. Removing the non-letter characters would also be
similar, except you would not add anything to the resulting string if the character matched.

If the resulting token is the empty string (i.e. the original token contained no letters), the token should not
be written to the output.

Using the system sort program

Once you have tokenize.py working properly, you will now need tor write a shell script, named shakesort,
to call your tokenizing program and pass its output to the built-in sort utility. This will be a one line
“program”. In general, to run the output of one program, say p1 to the input of another, say p2, one could
type something like:

p1 a11 a12 | p2 a21 a22

where a11 and a12 are command-line arguments to the p1 program and where a21 and a22 are command-line
arguments to the p2 program. Of course, in your case, p1 represents running tokenize.py program and p2
represents the sort utility. Commands of this type can be given at the system prompt or they can be placed
in a file.

Once you have placed the proper command in shakesort file, you need to make it executable with this
command:

chmod +x shakesort

To learn about what command-line arguments to pass to the built-in sort utility to achieve the desired result,
run the command:

man sort

Program Organization

Your tokenize.py program should have a main function, of course, plus the following helper functions:

• a function that when given a file name tokenizes the contents of the file, placing the individual tokens
into an array – the function returns this array

• a function, when given an uppercase letter, returns the equivalent lowercase letter

3



• a function that when given a token replaces uppercase letters in the token with lowercase ones, returning
the newly generated token

• a function that when given a token removes punctuation from the token, returning the newly generated
token

• a function that when given an array of unprocessed tokens, replaces each token in the array with its
processed version – this function is a procedure.

• a function that when given an array of tokens, outputs each non-empty token, one token per line

Stepwise refinement

Write a version of the program that:

• prints out the name of the file to be processed

• prints out the first token in the file

• prints out every token in the file

• stores each token in the file into an array – then prints the array

• adds the function that removes punctuation and a function that processes the array with the punctuation-
removing function – then prints the array

• adds the function that replaces upper case characters and process the array with this new function –
then prints the array

• adds the function that outputs the array, one token per line

Test each version of your program on a file that contains just a few tokens. Name this test data test.txt.

Challenge

Use lists instead of arrays. In the tokenizing function, if you prepend the tokens you read onto the front of
the growing list, you will find your program runs much faster!

Compliance Instructions

Name the file containing your small amount of test data test.txt. You should be able to run your program,
like this:

shakesort

Hint: you can test your shakesort shell script on a small amount of data by renaming your test.txt to
shakespeare.txt.

4



Submission Instructions

Make sure you have the following files in your directory before submitting:

• shakesort

• tokenize.py

• scanner.py

• test.txt

• shakespeare.txt

Change to the directory containing your assignment. If you are working on your USB-stick, run the command:

submit cs100 YYY project2

Replace YYY with your three-digit section number.

5


