
AI: Informed Search to Navigate the Subway
Brian O’Neill

Western New England University
Springfield, MA, USA

brian.oneill@wne.edu

Course Artificial Intelligence

Programming Language Python, Java

Resource Type Assignment

CS Concepts • VI.9.i Graph Operations / Algorithms

Knowledge Unit Programming Concepts

SYNOPSIS

This assignment allows students to gain experience with defining
AI search problems and implementing uninformed and informed
search algorithms. Students define the search problems for
navigating a subway system, requiring them to define the goal test,
cost function, and successor function. Students then implement
breadth-first search, depth-first search, and A* search. Finally, the
assignment requires students to implement a problem in a
completely different domain (the 8-puzzle) in order to demonstrate
that the search algorithms will work so long as the problem is
correctly defined. Students are given data files for the Boston “T”
and London “Tube” systems, including functions to parse these
data files and build appropriate data structures. This allows students
to focus on the search aspects of the problem, rather than
implementing the required graph data structures from the raw data.

ACM Reference Format:

O’Neill, B. 2022. AI: Informed Search to Navigate the Subway. In
EngageCSEdu. ACM,	New	York,	NY,	USA,. 2 pages.
https://dx.doi.org/10.1145/3564622

KEYWORDS
Informed search, uninformed search, assignment, artificial
intelligence, subway navigation.

1 INTRODUCTION
The purpose of this assignment is to provide students with the
opportunity to implement uninformed and informed search
algorithms in the context of finding a path between two stations in

the Boston and London public transportation systems. For these
tasks, the students are provided with functions that construct graphs
representing the appropriate transportation networks and methods
to query these graphs. Students may therefore focus on defining the
search problem and implementing the search algorithms.

Questions 1-5 directly apply to the subway navigation problem.
Students begin by defining the search problem itself, constructing
the successor function, goal test, and cost function for the general
subway navigation task. Students implement algorithms for depth-
first search, breadth-first search, and A* search and apply the
algorithms to the navigation problem. For A* search, students are
told to use straight-line distance as the heuristic, which is easily
calculated using code provided with the assignment. Students are
then asked to redefine the search problem so that the goal test is
satisfied not only by reaching the specified destination, but any
station within straight-line distance d of that destination. Again,
students apply the three search algorithms to the revised problem
definition.

In order to demonstrate and reinforce that the search algorithms are
independent of the problems they are applied to, Question 6
instructs students to define a new search problem class for the
sliding 8-puzzle (again implementing the successors, goal test, and
cost functions) and to apply their search algorithms to this problem.
Note that the heuristic function required for A* search is defined in
each problem class, rather than the search class, further indicating
that the search algorithm is independent from the problem.

The assignment concludes with three short-answer questions about
uninformed search, informed search, and these particular domains.
The most challenging question (item (b)) notes that the subway
navigation problem’s data sets are flawed, such that the straight-
line distance exceeds the actual track distance for some pairs of
stations. Students are expected to recognize that the straight-line
distance heuristic does not meet the conditions for admissibility, so
there is a chance that the results reported by A* search are sub-
optimal.

2 ENGAGEMENT HIGHLIGHTS

This assignment uses Meaningful and Relevant Content.
Navigating an unfamiliar transportation system, or more broadly,
an unfamiliar city, is a real problem. Students have personal
experience using navigation software (e.g. Google Maps). While
they likely have used it more for driving directions, faculty can
point out that Google provides public transit directions for most
major cities, Boston and London included. Navigating a known
network is a classic AI problem, and applying uninformed and
informed search algorithms to the challenge of navigating a subway
system is an example that is readily clear and meaningful to
students.

This	 work	 is	 licensed	 under	 a	 Creative	 Commons	 Attribution	 4.0	
International	License.	
ACM	EngageCSEdu,	September	2022.	
©2022	Copyright	held	by	the	owner/author(s).	
ACM	ISBN	978-1-4503-9925-8/22/09.	
DOI: http://dx.doi.org/10.1145/3564622

To make this assignment more meaningful to their own students,
faculty may want to adopt other transportation networks besides
Boston and London. Changing at least one of the subway systems
to one that is closer to your school would add meaning to the
content. For schools located some distance from a subway system,
a small bus system (even an on-campus bus system) would be a
reasonable substitute for the Boston network.

3 RECOMMENDATIONS

This assignment was developed for an upper-level AI class where
search is the first major topic covered. We announce the assignment
as we shift from uninformed search to informed search, allowing
two to three weeks to complete the assignment.

The assignment contains starter code for both Python and Java. We
include both because most of our students have experience in both
languages and we want to encourage them to use their preferred
language. Adopters could offer support in only one of the two
languages without impacting the merits or content of the
assignment.

As noted above, faculty adopting this assignment may want to
change the subway systems used to be more relevant to their
students. The Boston subway system was chosen because it is one
that our students are somewhat likely to have used themselves. It is
also good for debugging, since the hub-and-spoke nature of the
system means that there are few paths between any given pair of
stations. In contrast, the London system is more complex and has
many paths available. Faculty considering replacing either network
should consider the new network’s complexity when deciding
which network to remove. Adopters should also note that building
the data sets for both systems required compiling data from
multiple sources; the same would likely be true for any other
desired transit network. The readme file in the data folder cites the
sources for both datasets.

4 MATERIALS

The Project 1 Word file is the student-facing assignment
instructions. It contains a summary, assigned questions, and a brief
description of the code files given to students and the functions
therein. A grading rubric file is also included for instructors.

The data folder contains five files. The first four are comma-
separated variable (CSV) files describing the structure of the
Boston and London public transit systems. For each system, one
CSV file gives a list of stations and their latitude and longitude
coordinates. (Latitude and longitude are used to calculate straight-
line distance between the stations as a heuristic for A* search.) The
other CSV file for each system is effectively an adjacency list,
including track distances between each pair of adjacent stations.
The final file is a readme.txt file which explains the construction of
the other four files, including sources of data.

The python folder contains two files. The subway.py file defines
classes for Links, Stations, and SubwayMaps. These are effectively
Edge, Vertex, and Graph classes, with appropriate functions. There
are also static functions to construct the Boston and London subway
maps (graphs) from the data sets provided. Additionally, we

provide a function to calculate straight-line distance between two
latitude/longitude points for use with A* search.

The search.py file is an adaptation of code distributed alongside
Russell & Norvig’s Artificial Intelligence: A Modern Approach
textbook [1, 2]. (Note that their code was distributed under the MIT
license.) The code in this file defines an abstract Problem class and
a class for a Node in a search tree. It also provides stub methods for
each search algorithm that students are expected to implement.

The java folder provides similar code to the python folder. Because
of the nature of the language, each Python class described above is
in an individual Java file, belonging to either the search or subway
package. The Java code for the classes in the search package are
based on Russell & Norvig’s Python code [2], rather than their Java
code, so that the code distributed with this assignment would have
parallel structures across languages. Additional classes are
provided to represent Actions and States (as related to search
problems) and Tuples (a structure to unite Actions and States).
These classes are necessary in Java due to the type system; various
functions in the Problem and Node classes require Actions or
States. In Python, students can use strings, simple data structures,
or custom objects to represent states and actions.

5 PITFALLS

Despite guidance in Question 1 that directs students to the subway
package (or the equivalent Python script), including the existence
of functions that will create the graph for the two transportation
networks, some students end up writing their own code to read the
subway data files to build the networks instead of using those
functions. This is a major time sink for the students, particularly if
they end up building the network incorrectly. We have considered
reminding students during class that these functions exist and all of
their efforts should be on designing the problems and implementing
the algorithms.

One issue that can arise during grading, or earlier if students are
comparing notes on their results, is that different orderings within
the student-built successors() function in Question 1 can yield
substantially different results for depth-first search and breadth-
first search in Questions 2-3. The different orderings result from the
use of different provided graph methods to identify neighboring
stations. On the student side, this can lead them to believe that their
algorithm or problem definition are incorrect when they are not. On
the grading side, faculty need to be attentive to the order that
neighboring states were generated in the successors()
function while checking the accuracy of DFS and BFS solutions.
Question 6 avoids this issue by specifying an ordering for
neighbors; this is only reasonable because the smaller domain
makes a consistent ordering simpler to accomplish. Establishing a
consistent ordering for the subway networks would be a much
greater challenge.

6 REFERENCES

[1] Stuart J. Russell and Peter Norvig. 2009. Artificial
Intelligence: A Modern Approach (3rd ed.). Prentice Hall.

[2] Peter Norvig. 2021. Github: aimacode. Code for the book
“Artificial Intelligence: A Modern Approach.” Retrieved
from https://github.com/aimacode/.

