
AI: Connect Four Agent
Brian O’Neill

Western New England University
Springfield, MA, USA

brian.oneill@wne.edu

Course Artificial Intelligence

Programming Language Python, Java

Resource Type Assignment

CS Concepts • VI.9.i Graph Operations / Algorithms

Knowledge Unit Programming Concepts

SYNOPSIS

This assignment allows students to gain experience with AI game-
playing algorithms, implementing minimax and alpha-beta pruning
and designing a utility function for measuring game states. The
assignment uses Connect Four, a relatively simple fully-observable
and deterministic game that students are likely to have seen before.
Students are responsible only for developing an agent to play the
game; the game itself is already implemented and given as part of
the student-facing materials. The assignment breaks down the
requirements for the two algorithms into smaller chunks in order to
make the whole assignment more approachable. We also provide
code for Tic-Tac-Toe so that students can apply their code for
minimax and alpha-beta pruning to a simpler game where sub-
optimal moves will be more obvious, indicating potential bugs in
their implementation. The assignment allows for a tournament to
be played among all student submissions, potentially awarding
extra credit to the winner of the class tournament.

ACM Reference Format:

O’Neill, B. 2022. AI: Connect Four Agent. In	ACM	
EngageCSEdu.	ACM,	New	York,	NY,	USA, 2 pages.
https://doi.org.10.1145/3554916

KEYWORDS
Heuristic, game playing, minimax, alpha-beta pruning, connect
four, assignment, artificial intelligence.

1 INTRODUCTION
In this assignment, students implement the minimax and alpha-beta
pruning algorithms, along with several game-specific functions
required by those two algorithms. The domain for this assignment
is Connect Four [2], a two-player deterministic and fully-
observable game. The game is similar to Tic-Tac-Toe (or Noughts
and Crosses), with players trying to place four of their tokens in a
row on a 6x7 board. Unlike Tic-Tac-Toe, tokens cannot be placed

anywhere on the grid; instead tokens are dropped in a vertical
column, falling to the lowest available row.

Students are provided with code that implements Connect Four and
provides hooks for an AI player. Therefore, students are only
responsible for developing the game-playing algorithms and not
also implementing the game itself. Students are also provided with
code for Tic-Tac-Toe. This code clarifies some of the expectations
of the early Connect Four questions and provides a facility to debug
the game-playing algorithms in the later questions.

In the assignment, Question 1 instructs students to develop a simple
agent, primarily to ensure that students are familiar with the given
interface. In Questions 2-4, students define helper functions
necessary for the later minimax and alpha-beta pruning questions.
The Tic-tac-toe code includes implementations of these functions,
providing additional insight to students about their expected
behavior. Question 5 requires students to implement the minimax
algorithm. If implemented correctly, students should be able to
transfer their code to the Tic-tac-toe agent, which should then win
or draw every match. Losses indicate sub-optimal play, meaning
there is a bug in their code. Sub-optimal play is much easier to see
in Tic-tac-toe, due to its simplicity, than in Connect Four. For
Question 6, students implement alpha-beta pruning and develop a
heuristic function to measure the utility of a mid-game state.
Finally, Question 7 requires students to verbally describe their
utility function.

2 ENGAGEMENT HIGHLIGHTS

This assignment uses Meaningful and Relevant Content. When
teaching minimax and alpha-beta pruning, it is common to use toy
games without a real-world analog (particularly as examples to
explain the two algorithms), very simple real-world games (e.g.
Tic-tac-toe), or complex games whose rules and strategies are not
commonly understood without extensive experience (e.g. chess,
go). Tic-tac-toe is too simple for students to find relevant, while
chess may be too difficult for students not previously familiar with
the game. Using Connect Four splits the difference between these
two games – the game and basic strategy are commonly known, and
the rules are relatively simple. The complexity of the game
(branching factor, maximum depth) falls between Tic-tac-toe and
chess.

This assignment also Encourages Student Interaction, suggesting
that students test their agents against each other. While establishing
a tournament for extra credit may inspire competition and
discourage students from playing each other, we actually try to
encourage students to play-test their agents against each other in
order to see how well the agents are doing. Many students focus on
playing against their agents themselves, but find that they are not
as strong of a Connect Four player as they thought, losing
frequently to agents that are reasonably well-designed. By pitting

This	 work	 is	 licensed	 under	 a	 Creative	 Commons	 Attribution	 4.0	
International	License.	
ACM	EngageCSEdu,	August	2022.	
©2022	Copyright	held	by	the	owner/author(s).	
ACM	ISBN	978-1-4503-9511-3/22/08.	
DOI: http://dx.doi.org/ 10.1145/3554916

agents against classmates’ agents, students get the chance to
integrate their code and discuss the outcomes of their games,
potentially strengthening the strategies used in the alpha-beta
pruning heuristics.

3 RECOMMENDATIONS

This assignment was developed for an upper-level AI class, with
Data Structures as the prerequisite. Game-playing is the second
major topic covered in the course, following heuristic search. We
announce the assignment after covering minimax and alpha-beta
pruning, allowing two to three weeks to complete the assignment.

The assignment contains starter code for both Python and Java. We
include both because most of our students have experience in both
languages and we want to encourage them to use their preferred
language. Adopters could choose to offer only one language
without impacting the merits of the assignment.

Faculty adopting this assignment may be tempted to have students
implement the game rules, in addition to the AI algorithms. This
would substantially increase the scope of the assignment and the
time required. Doing so would also mean that students
implementing functions to evaluate board state as part of the alpha-
beta algorithm would not be able to reference the existing functions
to determine winning or losing states.

Adopters looking to replace Connect Four as the game would need
to either build a model for their preferred game, such as the model
included in this assignment, or require students to build the model,
as noted above. In order to keep the assignment at the same level of
difficulty, we recommend using another game that is both fully-
observable and deterministic, like Connect Four.

4 MATERIALS

The Project 2 Word file is the student-facing assignment
instructions. It contains a summary and assigned questions, along
with suggestions for how to debug their code for the more
challenging parts. Page and section numbers cited in this file are
from Russell & Norvig’s AI: A Modern Approach [1].

The python and java folders contain starter code for the respective
languages. The two folders have a parallel structure, so that
instructions for the project can be simplified. The differences
between the Python and Java code are largely in function and
variable naming to correspond to each language’s conventions. The
Java code is structured into packages, while the Python structure is
flat. Some classes that are in separate files for Java are combined
into a single file in Python. The following file descriptions are
based on the structure for the supplied Java code, though we note
the equivalent Python file(s) throughout.

The c4 package contains two source files and two subpackages.
The two source files are ConnectFour.java and
IllegalMoveException.java. (The equivalent files are connect4.py
and c4exceptions.py.) ConnectFour.java is the main class for the
project. Students are provided with code to play a single game or
batches of games, with games being output to the console or not at
all. Students can modify the code to change the agents being used

and to switch between the single game and batch functions.
IllegalMoveException.java is an Exception class thrown when an
invalid move is received in the game.

The c4.players package contains three classes that provide a
basis for the students’ implementation. Equivalent classes can be
found in c4players.py. The ConnectFourPlayer class is an abstract
class that any agent must extend. The ConnectFourRandomPlayer
class makes random moves. The ConnectFourHumanPlayer class
provides an interface for a human to play against an agent using the
code provided. Students’ agents should be extensions of the
ConnectFourPlayer abstract class.

The c4.mvc package contains adopts a Model-View-Controller
(MVC) pattern to control the game rules, logic, and displays.
Students do not need to be familiar with MVC to do this project, as
they should not modify any of the code within this package.
However, students will need to make use of functions within the
ConnectFourModel class (see c4model.py) for their agent to access
game information. This class is responsible for tracking the game,
including the current state of the board and determining whether
the game has reached a win or draw state. The
ConnectFourViewInterface (and ConnectFourViewBase abstract
class in c4view.py) establish the requirements for displays for the
Connect Four game. Two implementations are provided –
ConnectFourConsoleView gives text output of the game board and
asks for moves from human players using standard input, while
ConnectFourSilentView gives no output whatsoever and is
intended for batch gameplay. Both Python equivalents are found in
c4view.py. While no GUI views are provided, these could easily be
added as implementations of the ConnectFourViewInterface or the
ConnectFourViewBase abstract class. The ConnectFourController
class (c4controller.py) is a standard controller class within the
MVC pattern. Explicit observer interfaces (GridObserver and
ResultObserver) are included in Java only to allow the View and
Controller to receive information from the model. Equivalent
functions exist in the Python classes without the interface structure.

The tictactoe package, along with the tictactoe.mvc and
tictactoe.players subpackages, provide analogous code to
the classes above for Tic-Tac-Toe. (See tictactoe.py,
tictactoe_mvc.py, and tictactoe_players.py.) As previously noted,
this code is provided as a debugging tool for the minimax and
alpha-beta pruning questions.

Finally, the tournament folder includes code for running the extra
credit tournament in either Java or Python. This code is not
distributed with the student code; rather it is used by the instructor
during the grading process to run a class-wide tournament.
Tournaments are run entirely within-language; no code is provided
to allow a Java agent to play against a Python agent. Adopters must
follow the instructions in the comments for these files to make
student code accessible and results files readable.

5 REFERENCES

[1] Stuart J. Russell and Peter Norvig. 2009. Artificial
Intelligence: A Modern Approach (3rd ed.). Prentice Hall.

[2] Eric W. Weisstein. “Connect-Four.” From MathWorld--A
Wolfram Web Resource. Retrieved from
https://mathworld.wolfram.com/Connect-Four.html

