
vPool Project

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/PeachyPool on
3/22/2107

Overview of the vPython project

For this project, you will be writing a fully interactive 3D "pool-like" game

using vPython. We say "pool-like" because the game need not satisfy the
official rules of pool and the game may be substantially less
complicated than a full pool game. In fact, "interesting" interpretations

and wide variations in game play are welcome!

This project need not be pool, but should be a 3d game using vpython, with

• at least four gameplay objects (of some design)

• at least two kinds of implemented collisions, e.g., point-to-line and
point-to-point collisions

• some kind of user-control

https://www.cs.hmc.edu/twiki/bin/view/CS5/PeachyPool

• a game objective!
• a text file (milestone.txt and final.txt respectively) on how to play the

game
• optional it never hurts to have a "grutor" mode that makes the game

a bit easier to pay (and/or win)

Milestone requirements for the vPython project

For the milestone, you should submit a version for which the following pieces
are implemented and work:

• A text document called milestone.txt with your name and the name of

your partner (if any), the project that you've chosen, and a brief
description of your plans for your game. One paragraph will suffice for

the description. Also, include a description of the objective of the game
- and how we should run it!

• [Note for the final version - please include a file named final.txt in

your final version that lets us know how to play and any special
features or "gotchas" in the game.]

• In addition, your document should give instructions for playing the

game as it currently operates, e.g. "Pressing the "s" key will do one
thing, the mouse will allow the user to do another thing, etc."

• Implementation of enough of the functions, with docstrings, that the

game does something interesting (even if it is far short of the
complete implementation) in a file called milestone.py -- in fact, if your

file is named something else, this is completely OK -- just note how we

should run it in your milestone.txt file.

• Specifically, your program should include at least some "linear"
collisions (a point object with a plane or a line) and at least some

"spherical" collisions (a point object with another point object)
• Include any other files needed to test your game, as well... all of these

should be zipped into vpython_milestone.zip and submitted.

Do be sure to zip up the folder containing your vPython project file (or files)
and name it vpython_milestone.zip -- then submit that in the right spot in

Hw#12!

Getting started with with vPython

Documentation on vPython is available at the vPython website. It should
work pretty smoothly on Mac OS and Windows -- if you're installing onto

your own machine or would like to run it on the CS Lab Macs, see some of
the notes on the Lab 11 page.

Don't start from scratch!

Don't start this project with an empty Python file!!

Instead, start from your Lab 11 code - and then make changes to those files
to implement your game!

The reason for this is that you will absolutely want to run your code with

every change you make -- just to be sure it works. Don't write a large
amount of code and then try to test it -- there will be too many opportunities
for things to go wrong; in the end, you'll need to remove it all and bring

back each small change and test as you go... !

Examples to use...

In addition to Lab 11, here are a few small example programs that show

• wall_collide a function to detect if a sphere (or point) collides with

a wall (or any length/width box)

• using keyboard to move the camera view a good starting point
for changing the view programmatically, e.g., as a character moves.

• using mouse-drags to move/reorient an arrow you can then
print the vectors you create (hit p), but you may want to adapt the

axis vector to become cueball velocity, for example.

• orbital motion with vPython along with an arrow showing the
orbiting body's acceleration

• how to implement ideal elastic collisions hit spacebar to show

this for 2 moving spheres - you may want to alter/expand this to more
spheres...!

http://www.vpython.org/
https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab11
https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonWallCollisionFunction
https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonViewChangingExample
https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonMouseExample
https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonOrbitingExample
https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonCollisionExample

• how to shoot snowballs in VPython (hit space; the snowball will
disappear when it gets far enough from the origin)

• Using sounds from lab 3 in VPython... This example (and zip file)
will get you started incorporating sounds using the code from lab 3
(you'll have to convert things to .wav!)

• here is the folder of examples that comes with vPython - there
are many to inspire ideas (and you can borrow the physics from them
for your game...)

All of these programs should be runnable from VPython.

Requirements

This is, perhaps, the most open-ended of the final project options. Even so,
there are a number of requirements -- as well as plenty of freedom to

personalize your game!

Here are the requirements (and a few "non-requirements") for your game:

• When the game is started, it should have a 3-dimensional "table"

along with a collection of "pool balls." Your game can be very different
than pool, but should have some staging area and some "actors" or
"agents" within it. Just to standardize, we'll use "pool balls" for

whatever characters you choose in your game.
• There should be a "cue ball," that is, some object that the player can

strike or control directly, and at least 3 additional objects with which

the cue ball can interact.
• Three should be "walls," or some other obstacles, delimiting the game

field through which game objects can not pass. They should support

"linear collisions," that is collisions with an object defined by a point
and an extended object (a line or plane). A ball that hits a wall should
use the "angle of incidence equals angle of reflection" rule.

• There should be some pockets in the table where the balls can fall --
or some alternative notion of "goals or destination." Specifically, there
should be some point-to-point interactions modeled and implemented,

as well as the point-to-line interactions mentioned above.
• To summarize the interactions needed, your program should handle

point collisions and bounces in some way. That is, the different objects

in the game should interact visibly during the gameplay. This is where
your game should support at least some "spherical collisions," that is,

https://www.cs.hmc.edu/twiki/bin/view/CS5/VPythonSnowballExample
https://www.cs.hmc.edu/twiki/bin/view/CS5/UsingSoundsFromLab3InVPython
http://www.cs.hmc.edu/~cs5grad/examples.zip

collisions between two objects defined by points. They don't need to
be spheres, but they're welcome to be.

• Specifically, balls/characters should not be able to pass through one
another. It's nice to simulate the physics of ball-on-ball collisions using
physical accuracy, but you may use other approximations or "wacky

physics" for the spherical collisions. Just don't tell Profs. Gerbode and
Esin that we used the words "wacky" and "physics" in the same
sentence. Or, feel free to let them know that it was Prof. Kuenning

who wrote this... .
• However, your game should allow for multiple balls/objects moving

"simultaneously". For example, if ball X hits ball Y then

ball X presumably continues moving (in some direction) and

ball Y begins moving. Both of these balls should be moving for awhile.

Moreover, ball X and ball Y may now hit other balls and these other

balls may all need to move for some time as well. In other words, it is

not acceptable for your program to always have at most one ball
moving at a time.

• See the hint on how to compute collisions for several balls

simultaneously below... .
• You should have a well-defined game objective with clearly specified

win conditions. It can be a one-person game, a two-person game, or a

game against the computer opponent. That's totally up to you!
• optional It never hurts to have a "grutor" mode that makes the game

easier to play or win (or a "professor" mode in which you win

immediately!)
• Your program should somehow alert the user when he/she has won

the game!

• Your program must have an easy-to-use VPython interface (some
combination of mouse and keyboard) that allows the user to hit the
cue ball in different directions (optionally, with varying velocity).

You do not need to have an actual "cue stick," but you're certainly
welcome to do so. There are lots of other ways to handle the interface
and this is entirely up to you.

• Your milestone and final project documentation should include a plain-
text milestone.txt or final.txt file that describes the objective of your

game and how to use the user interface. If you want, a short summary

of the controls can also appear in the game itself... .

And, of course, feel free to add additional features as you wish... !

Handling friction...

• Warning Sometimes, vPool authors model friction by multiplying
velocities by a constant less than 1 each time step. Note that the

velocities never get to zero this way! It can be frustrating if it takes
a very long time for objects to come to rest - before making another
shot, for example. One way to avoid frustrating yourself (and the CS

60 graders!) is to check for slowly-moving objects and then simply set
their velocities to 0. Once all velocities are zero, the next "move" in
the game may be made.

Here are a few tips that may be helpful to you:

• First, remember that the vPython reference page is a self-contained
resource for vPython.

• This vpython_events.py file is an example of one way to manage
motion, keypresses, and mouse events

• The vPython arrow object can be used instead of drawing a pool cue to

indicate the direction in which you will strike the cue ball. For example,
the user might use the mouse or keyboard to rotate an arrow centered
at the cue ball. Then another user input, such as hitting the space bar,

could be used to cause the cue ball to move.
• See the vPython reference page for information on how to get

keyboard and mouse input from the user... .

• Using a vector to keep track of the direction of movement of a ball
allows for easy animation. Moreover, if the ball collides with another
object then you need only update the vector appropriately.

Notes and hints

How do I handle all the collisions for lots of different objects?!

It may seem like you would need a zillion conditional statements to handle
collisions for many objects, but you don't have to do all of them separately!

What many people do in this situation is to first create their objects:

ball1 = sphere(...stuff..)

ball2 = sphere(...stuff..)

ball3 = sphere(...stuff..)

ball4 = sphere(...stuff..)

...

and then make a list: L = [ball1, ball2, ball3, ball4, ...]

http://vpython.org/contents/docs/index.html
http://www.cs.hmc.edu/~cs5grad/vpython_events.py
http://www.cs.hmc.edu/~cs5grad/vpython_events.py

and then, to compute collisions, they run two loops through the list. Note
that we only check each pair once here!

for i in range(len(L)):

 for j in range(i+1,len(L)): # note we start at i+1

 if collide(L[i], L[j]) == True:

 # do something appropriate...

That way you can write a single function (collide) to check if the two balls

collide and then use it for all pairs....

What to Submit for the Milestone and Final

Project

For the milestone, you should submit a version for which the following pieces

are implemented and work:

• A text document called milestone.txt or, for the final

project, final.txt with your name and the name of your partner (if

any), the project that you've chosen, and a brief description of your
plans for your game. One paragraph will suffice for the description.
Also, include a description of the objective of the game - and how we

should run it!
• In addition, your final.txt document should give instructions for

playing the game as it currently operates, e.g. "Pressing the "s" key

will do one thing, the mouse will allow the user to do another thing,
etc."

• [For the milestone] Implementation of enough of the functions,

with docstrings, that the game does something interesting (even if it is
far short of the complete implementation) in a file called milestone.py -

- in fact, if your file is named something else, this is completely OK --
just note how we should run it in your milestone.txtfile.

• Specifically, your program should include at least some "linear"
collisions (a point object with a plane or a line) and at least some
"spherical" collisions (a point object with another point object)

• Include any other files needed to test your game, as well... all of these
should be zipped into vpython_milestone.zip for the milestone

or vpython_final.zip for the final version, and then submitted.

• [For the final] you should submit a single final.zip file that

includes the following:

o A text document called final.txt that provides a description of

the game and its objectives and complete instructions for how to

play the game.
o Your full game in a file called final.py.

o Be sure to include any other files needed to play your game,

e.g., sounds, other python files that get imported, etc.

	vPool Project
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/PeachyPool on 3/22/2107
	Overview of the vPython project
	Milestone requirements for the vPython project

	Getting started with with vPython
	Don't start from scratch!
	Examples to use...
	Requirements
	Handling friction...

	Notes and hints
	How do I handle all the collisions for lots of different objects?!

	What to Submit for the Milestone and Final Project

