
Sprint 3

Refactor and Reuse: Towards Sustainable Code

Collaboration/Plagiarism Policy: This assignment is individual work. Sending, receiving, posting, reading,

viewing, comparing, or otherwise copying any part of course assignments or solutions is not allowed except when

explicitly permitted in assignment instructions. This includes solutions from other students in the course, past or

present. See the course syllabus for penalties for collaboration policy violations.

Learning Objectives

• Simplify code structure by implementing inheritance to extend an abstract class.

• Implement the Comparable interface to define a natural ordering of objects.

• Create Comparator classes to compare objects in additional ways.

• Implement unit tests using the JUnit framework.

Grading Rubric

• 70% Methods function properly and your JUnit testing

• 30% Design and readability (See Coding Style Guide)

– 10% Correct indentation

– 10% Naming Conventions

– 10% Well-commented

∗ Comment at the head of each file (see “Style” section below)

∗ Comment at the head of every major (and new) method

∗ General in-line commenting as needed to highlight interesting logic

∗ Comment at the head of each JUnit test (brief 1-line is fine)

∗ Comment main-method testing code within your main() method

Instructions: The project manager noticed the PhotoLibrary and Album classes have nearly iden-
tical functions with regard to a list of photographs and wants you to harness the power of inheritance
to clean then up.

Additionally, the project manager is aware that as a photo library grows, it will be helpful to be
able to better manage large numbers of photos through sorting, searching, and other techniques. To
that end, you have been requested to provide ways to compare Photographs as outlined below.



Harness the power of inheritance

Create a new abstract class named PhotographContainer that holds Photographs. From the
Album class, move the following fields and methods into the PhotographContainer class. Once you
have moved them, remove them from the Album class. Note: we’ve kept the descriptions of each,
but you should not need to write any new code.

• Fields:

– name (protected)
A String containing the PhotographContainer’s name in whatever form it was provided.

– photos (protected)
An ArrayList<Photograph> of photos in the container. You are required to use ArrayList<Photograph>,
not an array or other kind of set.

• Methods:

– public String getName()

The getter written for the name field.

– public void setName()

The setter written for the name field.

– public ArrayList<Photograph> getPhotos()

The getter written for the photos field.

– public boolean addPhoto(Photograph p)

Add the Photograph p to the list of the current object’s photos if and only if it was not
already in that list. Return true if the Photograph was added; return false if it was
not added. Return false if p is null;

– public boolean hasPhoto(Photograph p)

Return true if the current object has p in its list of photos. Otherwise return false.

– public boolean removePhoto(Photograph p)

Remove Photograph p from the container, if it exists in the list of photos. If successful,
return true; else return false.

– public int numPhotographs()

Return the number of Photographs in the current container.

– public boolean equals(Object o)

Following the standard rules and conventions as shown in class, return true if the current
container object’s name value is equal to the name value of the container object passed
to equals(). Otherwise, return false.

– public String toString()

Generate a String that has the name of the container on the first line, followed by a list
of photo filenames in the PhotographContainer.

– public int hashCode()

The hashcode method we provided for Album for Sprint 2.

• Constructor: Write a constructor for PhotographContainer that matches that of the Album

class from Sprint 2. It must take a String name as parameter and initialize all other fields of
the container object (i.e. the ArrayList).

2



From the PhotoLibrary class, move the following fields and methods into the PhotographContainer
class. Once you have moved them, remove them from the PhotoLibrary class.

• Methods:

– public ArrayList<Photograph> getPhotos(int rating)

Return an ArrayList<Photorgraph> of photos from the photos list that have a rating

greater than or equal to the given parameter. If the rating is incorrectly formatted, return
null. If there are no photos of that rating or higher, return an empty ArrayList<Photograph>.

– public ArrayList<Photograph> getPhotosInYear(int year)

Return an ArrayList<Photograph> of photos from the photos list that were taken in
the year provided. For example, getPhotosInYear(2018) would return a list of photos
that were taken in 2018. If the year is incorrectly formatted, return null. If there are no
photos taken that year, return an empty ArrayList<Photograph>.

– public ArrayList<Photograph> getPhotosInMonth(int month, int year)

Return an ArrayList<Photograph> of photos from the photos list that were taken in
the month and year provided. For example, getPhotosInMonth(7, 2018) would return
a list of photos that were taken in July 2018. If the month or year are incorrectly
formatted, return null. If there are no photos taken that month, return an empty
ArrayList<Photograph>.

– public ArrayList<Photograph> getPhotosBetween(String beginDate, String endDate)

Return an ArrayList<Photograph> of photos from the photos list that were taken be-
tween beginDate and endDate (inclusive). For example, getPhotosBetween("2019-01-23",
"2019-02-13") would return a list of photos that were taken in between January 23 and
February 13 of 2019. If the begin and end dates are incorrectly formatted (specifically
with month not between 1 and 12 or day not between 1 and 31), or beginDate is after
endDate, return null. If there are no photos taken during the period, return an empty
ArrayList<Photograph>.

Remove the following methods and fields from the PhotoLibrary class, since they will be inherited
by the abstract class PhotographContainer:

• Fields:

– name

– photos

• Methods:

– getName()

– addPhoto()

– getPhotos()

– hasPhoto()

– numPhotographs()

Modify your PhotoLibrary class to extend the abstract class PhotographContainer. It will then
inherit all the methods available from the abstract class, including the list of photos. Since we inherit
removePhoto, but it does not work the way we need (i.e. removing photographs from the library’s
albums as well), override it by renaming the erasePhoto method to removePhoto. Remember to
keep the other methods in PhotoLibrary that you had implemented in HW3, such as createAlbum

and removeAlbum.

Modify your Album class to extend the abstract class PhotographContainer.

3



Comparing Photographs

For this section, you are asked to (1) modify your Photograph class to implement the Comparable
interface, and (2) write two Comparators.

1. Modify your Photograph class to implement the Comparable interface. This interface in-
structs Java on the natural order for objects of type Photograph. We will define the natural
ordering of photographs to be first by their dateTaken, and second by their caption. That is,
if two Photograph objects have the same value for dateTaken, they should be ordered (alpha-
betically) by the caption. To implement this interface, you must implement one additional
method in the Photograph class:

– public int compareTo(Photograph p)

Compares the dateTaken of the current Photograph object with the parameter p. If the
current object’s dateTaken is before p’s, return a negative number. If p’s is earlier, return
a positive number. If they are equal, return the comparison of the this object’s caption

with p’s caption.

Hint: Comparing dates of the form “YYYY-MM-DD” can be done with normal lexico-
graphical string comparisons (i.e. alphabetical sort), since comparing strings left-to-right
will first compare the year, then the month, then the day.

2a. Create the class CompareByCaption that implements the Comparator interface and compares
two Photographs by caption (in alphabetical order). If two captions are identical, then com-
pare by rating, in descending order with the highest-rated photo first.

2b. Create the class CompareByRating that implements the Comparator interface and compares
two Photographs by rating (in descending order). If two ratings are identical, then compare
by caption in alphabetical order.

Full specifications for the Comparable and Comparator interfaces are available at:

• https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

• https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

Reminder: For each of the methods, you must write the exact method signature as specified.
For your submission to pass the tests, field and method names must match. For example, our
test cases will look specifically for the method getPhotosInYear. If you rename the method to
be getPhotosinYear (notice the difference in capitalization) then any tests relating to / involving
this method will not pass since it would appear that you do not even have such a method as
getPhotosInYear. So be very careful to check that you are: (1) using the same names we ask you
to use, paying attention to capitalization, and (2) do not change the method return type, number
and types of the parameters, or visibility modifiers (private vs public).

We bring this issue to your attention because from past experience we’ve found that this will reduce
any stress associated with debugging your code and interpreting the results given back to you by
our test cases.

Testing: You will need to write at least two JUnit tests for each of the following methods:

• removePhoto(Photograph p) in PhotoLibrary

• compareTo(Photograph p) in Photograph

4

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html


• compare(Photograph a, Photograph b) in CompareByCaption

• compare(Photograph a, Photograph b) in CompareByRating

You are encouraged to keep your existing tests from HW2 as well as write tests for the other methods,
but we will not require it. You will need to submit these tests along with the rest of your code. Use
standard naming conventions for these JUnit tests (include the word ‘test’ in the beginning of the
method name, such as testRemovePhoto). Remember to only test one thing per JUnit test case
(method), also try to use only one assert statement in each JUnit test case. There is no upper limit
on how many JUnit test cases you write.

Place all your JUnit test cases in one single file (“JUnit Test Case”); you do not need separate files
to test each of your classes.

Style: You must follow the Coding Style Guide. This includes:

• Correct naming conventions, including appropriate camelCasing and TitleCasing.

• Comment each file, with a block at the top of the file denoting assignment information and
comments for each field and method of your classes. You should also comment portions of your
code that may be difficult to follow. We would like you to get into the habit of commenting
your code. This adds to the readability of your code which contributes to “good quality” code.

• Use correct indentation. Eclipse makes this easy: select all code and choose “Correct Inden-
tation” or Control-I (Windows/Linux) or Command-I (Mac).

• Do not put your classes into a package. (If you don’t know what this means, don’t worry about
it.)

• If two methods share identical logic, you should factor that out into a separate method (a
“helper” method).

5


