
Sprint 4

Graphical User Interface

Collaboration/Plagiarism Policy: This assignment is individual work. Sending, receiving, posting, reading,

viewing, comparing, or otherwise copying any part of course assignments or solutions is not allowed except when

explicitly permitted in assignment instructions. This includes solutions from other students in the course, past or

present. See the course syllabus for penalties for collaboration policy violations.

Learning Objectives

• Experience writing code using Event-Driven Programming.

• Design and develop a Graphical User Interface using Swing.

• Implement try/catch blocks to handle Exceptions.

• Develop features described by requirements rather than detailed specifications.

Grading Rubric

• 70% Functionality

• 30% Design and readability (See Coding Style Guide)

– 10% Correct indentation

– 10% Naming Conventions

– 10% Well-commented

∗ Comment at the head of each file (see “Style” section below)

∗ Comment at the head of every major (and new) method

∗ General in-line commenting as needed to highlight interesting logic

∗ Comment main-method code within your main() method

• 10% User interface creativity (Extra Credit)

In this final sprint, you will be utilizing all the of the previously implemented logic in a graphical
user interface. There are intentionally features in this assignment beyond the in-class material –
it is expected you will use the Java documentation to look up APIs to allow you to execute these
requirements. Cite sources in the code comments.

Instructions: The project owner wants a Graphical User Interface (GUI) front-end to the PhotoLibrary
application that we’ve been building. To start development of this application, you have been as-
signed to develop a prototype viewer GUI using Swing. A graphical layout is provided, depicted in
Figure 2, but you are encouraged to modify and extend the existing design for extra credit.



Photograph: You should modify your Photograph class to add the image data of the photograph.

• Fields:

– imageData (protected)
A BufferedImage object that contains the image’s data.

• Methods:

– public boolean loadImageData(String filename)

Given a filename as a String, this method loads the Image data from the file and stores
it into the imageData field. The filename is stored in the filename field. This method
returns true on success and false on failure. Hint: reading a file from disk may throw
an exception.
An Image can be loaded from a String using the following code:
BufferedImage img = ImageIO.read(new File(filename));

• Accessors (AKA getters): Provide a public method that returns a reference to the new field.
You must use the standard naming convention for it.

• Mutators (AKA setters): Add a mutator for the new field.

PhotoViewer: Download and edit the PhotoViewer class, which defines and launches the GUI
interface. It has an instance variable imageLibrary of type PhotographContainer that utilizes
your code from Sprint 3. The following features must still be implemented:

• Event handlers for GUI elements:

– NavigationListener

An event handler for the “Next” and “Previous” buttons that skip between full-sized
images displayed on the large imageDisplayLabel. When the “Next” button is clicked,
this handler should display the next image in the imageLibrary’s photos. When the
“Previous” button is clicked, this handler should display the previous image. If the
current image is the first image, “Previous” should display the last image in the list;
likewise, if the current image is the last image, “Next” should display the first image.

– RatingChangeListener

An event handler for the radio buttons associated with the ratings display. When a
different rating radio button is selected by the user, the rating for the Photograph dis-
played in the imageDisplayLabel should be updated and the rating reflected in the list
of thumbnail images.

– SortNavigationListener

An event handler for the sorting buttons, “Sort by Date,” “Sort by Caption,” and “Sort by
Rating,” which control the ordering of thumbnails. Selecting a new sort order should sort
the imageLibrary’s list of Photographs, update the list of displayed thumbnail images,
and reset the currently displayed image to the first image in the imageLibrary’s photos.

• private void drawThumbmails()

This method draws the thumbnail pane. It loops through all photographs in the imageLibrary’s
photos list and displays the thumbnail and a label containing the photograph’s caption,
dateTaken, and rating. You must implement and add a MouseListener to the thumbnailLabel
so that when the thumbnail is clicked by the user, displayPhoto() is invoked to display the
full-size version of that thumbnail in the main viewer. View the Java docs on how to write a
MouseListener: https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html.

2



• private void displayPhoto(int position)

This method updates the main image being displayed. Specifically, it must call
imageDisplayLabel.setIcon() to display the image at index position in imageLibrary’s
photos. It also updates the ratings radio buttons to show that photograph’s rating as selected.

• Testing the prototype using main method testing

– Create a folder named images in the root of your Eclipse project and put 5 images in it.
At least some of these images should be 1280 x 1024 or larger – typical sizes for photos
taken by a modern camera. By locating your images folder here, Java will be able to find
the images using the relative path below.

– In the main method, write a test invocation that creates a PhotographContainer con-
taining 5 hard-coded images and loads your prototype GUI, like the example in Figure 1.

Hint 1: Using a JLabel component will allow you to add a thumbnail image as an ImageIcon.
The JLabel component will also allow you to set a caption to display caption, date and rating
information, as well as add a MouseListener object.

Hint 2: The appearance of GUI applications are dependent on screen resolution. Laptops come in
a wide variety of screen resolutions, and it is likely your grader may not have the same resolution.
For this reason, it is wise to avoid fixed-size windows. Take advantage of the built-in Swing features
(Layouts) to size your overall GUI window. Size images consistently to keep the image presentation
uniform and avoid skewing or stretching the image. Include a screenshot with your submission.

Full documentation and examples of Swing components are available at https://docs.oracle.

com/javase/tutorial/uiswing/components/componentlist.html.

Style: Follow the Coding Style Guide. This includes:

• Correct naming conventions, including appropriate camelCasing and TitleCasing.

• Comment each file, with a block at the top of the file denoting assignment information and
comments for each field and method of your classes. You should also comment portions of your
code that may be difficult to follow. We would like you to get into the habit of commenting
your code. This adds to the readability of your code which contributes to “good quality” code.

• Use correct indentation. Eclipse makes this easy: select all code and choose “Correct Inden-
tation” or Control-I (Windows/Linux) or Command-I (Mac).

• Do not put your classes into a package. (If you don’t know what this means, don’t worry about
it.)

• If two methods share identical logic, you should factor that out into a separate method (a
“helper” method).

3

https://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html
https://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html


public static void main(String [] args) {

// Instantiate the PhotoViewer Class

PhotoViewer myViewer = new PhotoViewer ();

// the relative image directory (use one line from below)

String imageDirectory = "images/"; // for Macs/Linux , or

String imageDirectory = "images \\"; // for Windows

Photograph p1 = new Photograph(imageDirectory + "img1.jpg",

"caption", "2015 -06 -30", 5);

// add four more photographs like the line above

myViewer.setImageLibrary(new PhotoLibrary("Test Library", 1));

myViewer.getImageLibrary ().addPhoto(p1);

// four more photographs added like the line above

// Invoke and start the GUI

javax.swing.SwingUtilities.invokeLater (() ->myViewer.initialize ());

// or equivalently using an anonymous class

javax.swing.SwingUtilities.invokeLater(new Runnable {

public void run() {

// This method is run to create and show the GUI

myViewer.initialize ();

}

});

}

Figure 1: An example main method to load images and invoke the GUI.

4



Figure 2: Example layout of PhotoViewer GUI, based on the provided code. Feel free to be creative
in your design, as long as all components are still displayed.

5


