Sprint 2
Albums: Keeping Photos Organized

Collaboration/Plagiarism Policy: This assignment is individual work. Sending, receiving, posting, reading,
viewing, comparing, or otherwise copying any part of course assignments or solutions is not allowed except when
explicitly permitted in assignment instructions. This includes solutions from other students in the course, past or

present. See the course syllabus for penalties for collaboration policy violations.

Learning Objectives
e Develop a Java class that uses the Collections framework.
e Utilize hashCode () to determine object uniqueness.
e Define a date object, compare dates, and manipulate dates in Java.
e Implement unit tests using the JUnit framework.
Grading Rubric
e 70% Methods function properly and your JUnit testing
e 30% Design and readability (See Coding Style Guide)

— 10% Correct indentation
— 10% Naming Conventions

— 10% Well-commented (including the test code within your JUnit tests)

Instructions: Now that you’ve harnessed the power of Instagram, posting Photographs to your
photos, it’s time for more power! Our photo feeds have gotten out of control and we’d like to be able
to organize our photos a little better, so we've introduced Albums! To implement this additional
functionality, you will need to modify your original PhotoLibrary and Photograph classes and add
an Album class. You must adhere to the following guidelines when creating and modifying your
classes:

Photograph class: You will need to modify your Photograph class from Sprint 1 by adding the
following fields and methods:

e Fields:

— dateTaken (private)
A String containing the date the photograph was taken. Dates are given in the format
“YYYY-MM-DD?” such as “2019-02-13” (February 13, 2019)".

LAn incorrectly formatted date may, for example, be missing one section, be in the wrong order, include the
15th month or the 42nd day. This is not an exhaustive list of examples; you should verify that the date appears as
“YYYY-MM-DD”.



— rating (private)
An int; the rating of the photograph on a scale from 0 to 5. No other values are allowed.

e Constructors: Provide one additional constructor that has the following header:
public Photograph(String filename, String caption, String dateTaken, int rating)
This will provide an additional way to create Photograph objects that will save coding when
all of the necessary data are on hand. You should keep both constructors for this class.

e Accessors (AKA getters): Provide public methods that return references to each of the new
fields. You must use the standard naming convention for these.

e Mutators (AKA setters): Add mutators for the rating and caption fields.
e Other Methods:

— public int equals(Object o)
Update the equals method to also compare the dateTaken value, along with filename
and caption. Photographs with the same caption and filename but taken on different
dates should not return true.

— public int hashCode()
Override the default hashCode method in the Object class to produce a unique integer
for a Photograph object. This method should return the hashCode() of the following
String, which includes both the filename and the caption:
String uniqueStr = filename + "---" + caption + "---" + dateTaken;

PhotoLibrary class: You will need to modify your PhotoLibrary class from homework 1 by adding
the following fields and methods:

e Fields:

— albums (private)
A HashSet of Albums that this user has created. Each album will then contain photos
from this user’s photos stream that they have organized into albums.

e Accessors (AKA getters): Provide a new public method that returns a reference to the albums
field. You must use the standard naming convention for accessors.

e Mutators (AKA setters): Since albums are controlled within the PhotoLibrary class, do not
write a setter for the albums field. It will be modified by new or updated methods below.

e Other Methods:

— public ArraylList<Photograph> getPhotos(int rating)
Return an ArrayList of photos from the photos feed that have a rating greater than
or equal to the given parameter. If the rating is incorrectly formatted, return null. If
there are no photos of that rating or higher, return an empty ArrayList.

— public ArrayList<Photograph> getPhotosInYear(int year)
Return an ArrayList of photos from the photos feed that were taken in the year provided.
For example, getPhotosInYear(2018) would return a list of photos that were taken in
2018. If the year is incorrectly formatted, return null. If there are no photos taken that
year, return an empty ArrayList.

— public ArrayList<Photograph> getPhotosInMonth(int month, int year)
Return an ArrayList of photos from the photos feed that were taken in the month and
year provided. For example, getPhotosInMonth(7, 2018) would return a list of photos
that were taken in July 2018. If the month or year are incorrectly formatted, return null.
If there are no photos taken that month, return an empty ArrayList.



— public ArrayList<Photograph> getPhotosBetween(String beginDate, String endDate)
Return an ArrayList of photos from the photos feed that were taken between beginDate
and endDate (inclusive). For example, getPhotosBetween("2019-01-23", "2019-02-13")
would return a list of photos that were taken in between January 23 and February 13 of
2019. If the begin and end dates are incorrectly formatted, or beginDate is after endDate,
return null. If there are no photos taken during the period, return an empty ArrayList.

— public boolean createAlbum(String albumName)
Creates a new Album with name albumName and adds it to the list of albums, only if an
Album with that name does not already exist. Returns true if the add was successful,
false otherwise.

— public boolean removeAlbum(String albumName)
Removes the Album with name albumName if an Album with that name exists in the set
of albums. Returns true if the remove was successful, false otherwise.

— public boolean addPhotoToAlbum(Photograph p, String albumName)
Add the Photograph p to the Album in the set of albums that has name albumName if and
only if it is in the PhotoLibrary’s list of photos and it was not already in that album.
Return true if the Photograph was added; return false if it was not added.

— public boolean removePhotoFromAlbum(Photograph p, String albumName)
Remove the Photograph p from the Album in the set of albums that has name albumName.
Return true if the photo was successfully removed. Otherwise return false.

— private Album getAlbumByName(String albumName)
This is a private helper method. Given an album name, return the Album with that name
from the set of albums. If an album with that name is not found, return null.

— public boolean erasePhoto(Photograph p)
Modify your erasePhoto from homework 2 to remove the Photograph p from the Pho-
toLibrary list of photos as well as remove the Photograph from any Albums in the list of
albums. Return true if the photograph was successfully removed, false otherwise.

— public String toString()
Modify your original toString() method to also show a list of Album names contained
in the album list. Any reasonable implementation of this is acceptable.

Album class: Albums contain a list of photos.
e Fields:
— name (private)

A String containing the Album’s name in whatever form it was provided.

— photos (private)
An ArrayList<Photograph> of photos in the album. You are required to use ArrayList<Photograph>,
not an array or other kind of set.

e Constructors: Provide one constructor that takes a name for the Album. Make sure you follow
good standard Java practice and initialize all your fields in the constructor.

o Accessors (AKA getters): Provide public methods that return references to the name and
photos fields. You must use the standard naming convention for these.

e Mutators (AKA setters): Write a setter for the name field but not for the photos field (which
will be changed by other methods outlined below). You must use the standard naming con-
vention for the mutator.



e Other Methods:

— public boolean addPhoto(Photograph p)
Add the Photograph p to the list of the current object’s photos if and only if it was not
already in that list. Return true if the Photograph was added; return false if it was not
added. Return false if p is null;

— public boolean hasPhoto(Photograph p)
Return true if the current object has p in its list of photos. Otherwise return false.

— public boolean removePhoto(Photograph p)
Remove Photograph p from the album, if it exists in the list of photos. If successful,
return true; else return false.

— public int numPhotographs()
Return the number of Photographs in the current album (in photos).

— public boolean equals(Object o)
Following the standard rules and conventions as shown in class, return true if the current
Album object’s name value is equal to the name value of the Album object passed to
equals (). Otherwise, return false.

— public String toString()
A means to print out an Album object. Generate a String that has the name of the album
on the first line, followed by a list of the contained photos’ filenames.

— public int hashCode()
Override the default hashCode method in the Object class produce a unique integer for
an Album. This method should return the hashCode () of the name field.

Reminder: For each of the methods, you must write the exact method signature as specified. In
order for us to write test cases to check your code on Web-CAT, we need to ensure everybody is
using the same names for fields and methods. For example, our test cases on Web-CAT would
look specifically that you have the method getPhotosInYear. If you rename the method to be
getPhotosinYear (notice the difference in capitalization) then any tests relating to / involving
this method will not pass since it would appear that you do not even have such a method as
getPhotosInYear. So be very careful to check that you are using the same names we ask you to
use, paying attention to capitalization, and do not change the method return type, number of type
of the parameters, or visibility modifiers (private vs public).

We bring this issue to your attention because from past experience we’ve found that this will reduce
any stress associated with debugging your code and interpreting the results given back to you by
our test cases.

Testing: You will need to write at least two JUnit tests for each of the following methods in the
PhotoLibrary class:

e getPhotos(int rating)

getPhotosInMonth(int month, int year)

getPhotosBetween(String beginDate, String endDate)
e erasePhoto(Photograph p)

e similarity(PhotoLibrary p) from Sprint 1



You are encouraged to write tests for the other methods but we will not require it. You will need to
submit these along with the rest of your code. Use standard naming conventions for these JUnit tests
(include the word ‘test’ in the beginning of the method name, such as testSimilarity). Remember
to only test one thing per JUnit test case (method). There is no upper limit on how many JUnit
test cases you write.

Place all your JUnit test cases in one single file (“JUnit Test Case”); you do not need separate files
to test Photograph. java, PhotoLibrary. java, and Album. java.

Style: You must follow the Coding Style Guide. This includes:

Correct naming conventions, including appropriate camelCasing and TitleCasing.

Comment each file, with a block at the top of the file denoting assignment information and
comments for each field and method of your classes. You should also comment portions of your
code that may be difficult to follow. We would like you to get into the habit of commenting
your code. This adds to the readability of your code which contributes to “good quality” code.

Use correct indentation. Eclipse makes this easy: select all code and choose “Correct Inden-
tation” or Control-I (Windows/Linux) or Command-I (Mac).

Do not put your classes into a package. (If you don’t know what this means, don’t worry about
it.)

If two methods share identical logic, you should factor that out into a separate method (a

“helper” method).
@080




