Sprint 1
Even Instagram started somewhere...

Collaboration/Plagiarism Policy: This assignment is individual work. Sending, receiving, posting, reading,
viewing, comparing, or otherwise copying any part of course assignments or solutions is not allowed except when
explicitly permitted in assignment instructions. This includes solutions from other students in the course, past or

present. See the course syllabus for penalties for collaboration policy violations.

Learning Objectives
e Implement code that utilizes String and primitive variable types.

e Create a Java object (class) with getters and setters.

Develop Java classes that use instances of another class.
e Implement an ArrayList to store a collection of items.
e Implement and utilize static methods appropriately.
e Test written code using main method testing.
Grading Rubric
e 70% Methods function properly
e 30% Design and readability (See Coding Style Guide)

— 5% Correct indentation

— 5% Naming Conventions

— 10% Well-commented (including the test code within your main() method)
— 10% Testing in main()

Instructions: Even Instagram started somewhere. This is the first in a series of assignments that
will produce an application for storing and viewing photographs. We will refer to each assignment
as a sprint, a term used by developers to indicate a fixed period of time in which deliverables are
produced. (Learn more about the Agile process here: https://www.agilealliance.org/agile101/.)
Each sprint will produce a complete product that builds on the sprint that came before it.

In this first sprint you will be breaking ground on the photography application, beginning with
the foundational classes PhotoLibrary and Photograph. These classes will define what it means
to be a Photograph, what it means to be a PhotoLibrary, and how they interact; specifically a
PhotoLibrary may contain Photograph items a user posts to their photo feed. You must adhere to
the following requirements (guidelines) when creating your classes:



Photograph class: For this assignment we will consider a Photograph to be just a caption and
filename.

e Fields:

— caption (private)
A String; the caption of the photograph. Once created this will never change, so you are
welcome to make it final if you want.

— filename (private)
A String; the filename of the photograph. Once created this will never change, so you are
welcome to make it final if you want.

Constructors: Provide one constructor that takes a filename and caption (in that order).

Accessors (AKA getters): Provide public methods that return references to the caption and
filename fields. You must use the standard naming convention for these.

Mutators (AKA setters): None. Once a photograph exists, its caption and filename are fixed.
e Other Methods:

— public boolean equals(Object o)
Following the standard rules and conventions as shown in class, return true if the Pho-
tograph object passed to equals() with caption and filename strings match (are equal
to) the caption and filename strings of the current Photograph object; otherwise, return
false.

— public String toString()
A means to print out a Photograph object. Generate a String that shows the values of
the fields caption and filename. Any reasonable implementation of this is acceptable.

PhotoLibrary class: A PhotoLibrary has a name and a list of photos the user has posted to their
photo feed, but both of those can change. To keep libraries straight, they also have a numerical ID.

o Fields:

— name (private)
A String containing the PhotoLibrary’s name in whatever form it was provided.

— id (private)
An int containing the PhotoLibrary’s unique id. Once set this will never change, so you
are welcome to make it final if you want.

— photos (private)
An ArrayList<Photograph> of photos the user has posted to their feed in this library.
You are required to use ArrayList<Photograph>, not an array or other kind of list.

e Constructors: Provide one constructor that takes a name and an id in that order. Make sure
you follow good standard Java practice and initialize all your fields in the constructor.

e Accessors (AKA getters): Provide public methods that return the value of the id field and
references to the name and photos fields. You must use the standard naming convention for
these.

e Mutators (AKA setters): Write a setter for the name field but not for id (which cannot change)
and not for the photos field (which will be changed by other methods outlined below). You
must use the standard naming convention for the mutator.

Sprint 1



e Other Methods:

— public boolean addPhoto(Photograph p)
Add the Photograph p to the list of the current object’s photos feed if and only if it was
not already in that list. Return true if the Photograph was added; return false if it was
not added.

— public boolean hasPhoto(Photograph p)
Return true if the current object has p in its list of photos. Otherwise return false.

— public boolean erasePhoto(Photograph p)
Once a photo is available online, it’s hard to delete. However, this particular PhotoLibrary
may delete the photo from its feed. If Photograph p is in the current PhotoLibrary
object’s list of Photographs, remove p from the current object’s list. Return true if the
Photograph was removed or false if it was not found.

— public int numPhotographs()
Return the number of Photographs the current object has taken (in photos).

— public boolean equals(Object o)
Following the standard rules and conventions as shown in class, which are in keeping with
the Java equals method specification, return true if the current PhotoLibrary object’s id
value is equal to the id value of the PhotoLibrary object passed to equals(). Otherwise,
return false.

— public String toString()
A means to print out a PhotoLibrary object. Generate a String representation of a
PhotoLibrary object showing the values of the name, id, and photos fields. Any reasonable
implementation of this is acceptable.

— public static ArrayList<Photograph> commonPhotos(PhotoLibrary a, PhotoLibrary b)
Return an ArrayList<Photograph> of the photos that both PhotoLibrary a and Pho-
toLibrary b have posted to their feeds. Use the equals method of the Photograph class
to determine if two Photograph objects represent the same photograph.

— public static double similarity(PhotolLibrary a, PhotolLibrary b)

Returns a measure of how similar the photo feeds are between PhotoLibrary a and Pho-
toLibrary b, in terms of a numerical value between 0 and 1. If either PhotoLibrary does
not have any photos, the result is 0.0. Otherwise, it is the number of commonPhotos to
both libraries divided by smaller of the number of photos in a’s feed and the number of
photos in b’s feed.

Reminder: Java respects types, so the integer division of 3 / 4 gives integer 0, while
including a float or double in the division 3 / 4.0 gives 0.75.

NOTE: For each of the methods, you must write the exact method signature as specified.

Testing: We expect that you will add a main() method to test your code. We require at least two
tests of each of the methods listed above, excluding the getters and setters. Part of the Design and
Readability grade is based on of your main method testing.

Style: You must follow the Coding Style Guide. This includes:

e Correct naming conventions, including appropriate camelCasing and TitleCasing.

e Comment each file, with a block at the top of the file denoting assignment information and
comments for each field and method of your classes. You should also comment portions of your
code that may be difficult to follow. We would like you to get into the habit of commenting
your code. This adds to the readability of your code which contributes to “good quality” code.

Sprint 1



e Use correct indentation. Eclipse makes this easy: select all code and choose “Correct Inden-
tation” or Control-I (Windows/Linux) or Command-I (Mac).

e Do not put your classes into a package. (If you don’t know what this means, don’t worry about
it.)

e If two methods share identical logic, you should factor that out into a separate method (a

“helper” method).
@050

Sprint 1



