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This project offers you an opportunity to use Python to develop a statistical 
model of text that will allow you to "ID" an author or style -- with varying 

degrees of success -- from samples of text... 

Milestone requirements for Text ID 

You should have a TextModel class along with these methods, working at 

least to the extent described: 

• a working constructor and __repr__: a version of each is provided in 

the description 

• readTextFromFile(self, filename): should take in a filename (a string) 

and should return all of the text in that file 
• addTextFromString(self, s): should use the text in the input string s to 

add to the self.sentencelengths, self.words, and self.wordlengths 
dictionaries (the self.stems dictionary should be working for the final 
deliverable, but does not need to work for the milestone) 

• printAllDictionaries(self): this method simply prints all of 

the TextModel's dictionaries (it's especially helpful for debugging) 

• saveModelToFile(self): you need this method to write all of 

the TextModel' dictionaries to a file. The file should be named using the 

string in self.name with the file extension .txt 

• readModelFromFile(self): This method should open the file (named as 

described above) and read the dictionaries into the text model 

https://www.cs.hmc.edu/twiki/bin/view/CS5/TextClouds
https://www.cs.hmc.edu/twiki/bin/view/CS5/TextID


Be sure to zip up the folder containing your Text ID project file (or files) and 
name it textid_milestone.zip -- then submit that in the right spot for Hw#12! 

 

Background 

Statistical models of text are one way to quantify how similar one piece of 
text is to another. Such models were used as evidence that the book The 
Cuckoo's Calling was written by J. K. Rowling (using the name Robert 

Galbraith) in the summer of 2013. Details on that story and the analysis 
done appear at this link. 

The comparative analysis of those works used simple models -- perhaps 

surprisingly simple -- of an "author's style," for example, the distribution of 
word lengths in a document. The four "text features" that we ask you to 
implement for this project are 

• The distribution of words used by an author 
• The distribution of word lengths (noted above) 
• The distribution of word-stems used (e.g., "spam" and "spamming" 

would have the same stem) 
• The distribution of sentence-lengths used 
• plus, the project asks you to include one more "text feature" of your 

own design 
o for example, you could use punctuation in some way 
o or compute something else about the text - it could be the 

number of words ending in "ness," something about 
capitalization, or anything else you can compute or count using 
Python... 

Perhaps the most-common and most-successful application of this kind of 
textual analysis is Spam detection and filtering. 

 

Getting started: the TextModel overview 

To create your Bayesian classifier, you will extend your Markov text model 
with a more complete statistical model of a body of text. 

All of the examples above have used words as features and word-frequency 
dictionaries as models. Here, we provide a constructor to get you started 
with the following empty dictionaries 

http://www.salon.com/2013/08/23/how_j_k_rowling_was_exposed_as_robert_galbraith_partner/
http://en.wikipedia.org/wiki/Bayesian_spam_filtering


• self.words 
• self.wordlengths 
• self.stems 
• self.sentencelengths 

• remember that you'll need one more dictionary for a text-feature of 
your own design! 

Computing word lengths from words won't be a problem. However, 
computing stems and sentence lengths are an additional part of the 
challenge. Some starting functions and other hints are below. 

 

TextModel starter code 

To get started, here is part of a constructor, __init__ and string-conversion 

function, __repr__: 

class TextModel: 

 

    def __init__(self, name): 

        """ the constructor for the TextModel class 

            all dictionaries are started at empty 

        """ 

        self.name = name 

        self.words = {}   # starts empty 

        self.wordlengths = {} 

        self.stems = {} 

        self.sentencelengths = {} 

        # you will want another dictionary for your text feature 

 

 

    def __repr__(self): 

        """ this method creates the string version of TextModel 

objects 

        """ 

        s  = "\nModel name: " + str(self.name) + "\n" 

        s += "    n. of words: " + str(len(self.words))  + "\n" 

        s += "    n. of word lengths: " + 

str(len(self.wordlengths))  + "\n" 

        s += "    n. of sentence lengths: " + 

str(len(self.sentencelengths))  + "\n" 

        s += "    n. of stems: " + str(len(self.stems))  + "\n" 

        # you will likely want another line for your custom 

text-feature 

        return s 



In addition, here are several methods you should implement for 
the milestone part of the project: 

• addTextFromString(self, s): should use the text in the input string s to 

add to the self.sentencelengths, self.words, and self.wordlengths 
dictionaries (the self.stems dictionary should be working for the final 

deliverable, but does not need to work for the milestone) 
• readTextFromFile(self, filename): should take in a filename (a string) 

and should return all of the text in that file 

• printAllDictionaries(self): this method simply prints all of 

the TextModel's dictionaries (it's especially helpful for debugging) 

• saveModelToFile(self): you need this method to write all of 

the TextModel' dictionaries to a file. The file should be named using the 

string in self.name with the file extension .txt 

• readModelFromFile(self): This method should open the file (named as 

described above) and read the dictionaries into the text model 

• you should create a method called cleanText(self, text): use this as a 

starting point! 
•    def clean(self,w): 

•       for p in string.punctuation: 

•          w = w.replace(p,'') 

•       return w.lower() 

You will need import string at the top! 

 

Hints and other methods 

One of the best approaches to all new software projects is to make small 

examples work at first. 

Here is a start for the addTextFromString method. Certainly you'll want to 

expand this. 

    def addTextFromString(self, s): 

        """ analyzes the string s and adds its pieces 

            to all of the dictionaries in this text model 

        """ 

        LoW = s.split() 

        for w in LoW: 

            if w not in self.words: self.words[w] = 1 

            else: self.words[w] += 1 



 
Throughout the project, you may end up improving and expanding this 

function, but it's important to get it working early at a basic level, i.e., 

adding words to the self.words dictionary.  

 
For the milestone, you only need to have 

the self.words and self.wordlengths dictionaries working. Here is a test 

to make sure you're on track. Note that this example has all five dictionaries 
working, but for the milestone you only need words, wordlengths, and 

sentencelengths working! 
 
          >>> T = TextModel( "test" ) 

          >>> T.addTextFromString( "This sentence has five 

words." ) 

          >>> print T 

          Model name: test 

            n. of words: 5 

            n. of word lengths: 4 

            n. of sentence lengths: 1 

            n. of stems: 5 

            n. of punctuation marks: 1  # for my implementation 

- your may vary! 

 

          >>> T.words 

          {'this': 1, 'has': 1, 'five': 1, 'words': 1, 

'sentence': 1} 

 

          >>> T.wordlengths 

          {8: 1, 3: 1, 4: 2, 5: 1} 

 

          >>> T.sentencelengths 

          {5: 1} 

 

          >>> T.stems 

          {'sentenc': 1, 'word': 1, 'ha': 1, 'five': 1, 'thi': 

1}  

          # I used the porter stemmer - see below 

 

          >>> T.punc 

          {'.': 1} 

 

          # dictionaries don't have an order, so different 

orderings are OK 

Do be sure to run the above tests or others like it, to make sure your code is 

working thus far... ! 



 
 

• readTextFromFile(self, filename)  

augments the model -- again, all of the dictionaries -- with the text in 
file filename. Your best bet here is to open the file, read all the text 

into a string, and then call self.addTextFromString on that string! That 

way, all of the functionality you add to addTextFromString will be used 

by this file-handler, as well! You may want to refer to your Markov 
text-generation code to remind you how file-handling works!  

 
Note that this is very different than 
the readModelFromFile method: readTextFromFile reads a plain-text file 

with prose in order to model it. The readModelFromFile will read in from 

a file that you write a list of Python dictionaries, i.e., an already-
created model.  

• cleanText(self, s)  

"cleans" the text in string s in a reasonable way. This does not have to 

be perfect -- in fact, it can't be. But, it should make sure punctuation 
is removed (after counting sentences, to be sure!) It should also 

ensure that a list of words (all lowercase) is returned. Some people 
write two "cleaning" functions -- one to clean the full string of text and 
another to break it into words and clean the words. It's up to you.  

 
Helpful hints:  
Hint #1: You will find the built-in string 

methods replace and lower helpful -- try this example out in your 

Python shell: 
•           s = "Ms. Rowling writes." 

•           print s 

•           s = s.replace( "Ms.", "Ms" ) # replace "Ms." with "Ms" 

•           print s 

•           s = s.lower() 

•           print s 

 
Warning!   Do not use the function remAll that we wrote using 

recursion -- you'll run out of recursive stack on large files!!  

• saveModelToFile(self)  

This method should create a list of all of self's dictionaries and save 

them to a file that uses the string self.name as its name, with .txt as 

its file extension. See the next method for a set of example tests... . 



Here is a small function to use as a starter - but you'll definitely need 
to adapt it to make it a working method of your TextModel class: 

• def saveListOfTwoDs(): 

•     """ starter function - be sure to adapt! """ 

•     # for now, L is a list of two dictionaries 

•     # you will want it to be a list of _all_ your dictionaries! 

•     L = [ {"a":97, "b": 98},  {"spam":42} ] 

•  

•     # we open the file into which to store L 

•     f = open( "thefile.txt", "w" ) # "w" == "write" 

•  

•     # print the list L into the file, then close it 

•     print >> f, L 

•     f.close() 

•     # that's it! 

 
 
You should be able to test this with saveList(), and it should make a 

short file named thefile.txt containing that list of two dictionaries.  

• readModelFromFile(self)  

This is the complementary method to saveModelToFile method, above. 

Here is a starting point. Again, make sure this works -- and then you'll 

need to adapt it to your TextModel class: 
• def readListOfTwoDs(): 

•     """ starter function - matches saveList() """ 

•     # open the file for reading 

•     f = open( "thefile.txt", "r" ) # "r" == "read" 

•  

•     # we read _all_ of the contents into the string data 

•     data = f.read() 

•     f.close() 

•  

•     # Python magic! We _eval_ the string to get the list of 2 

dictionaries 

•     L = eval(data) 

•  

•     # We then unpack into two different names 

•     d1, d2 = L  # gives each of the two a different name 

•     print "d1 is", d1 

•     print "d2 is", d2 

•     print 'd1["b"] is', d1["b"] 

•     # that's it! 



 
 

Run this readList function after you run saveList.  

Additional methods for the final portion of the 

project... 

For the final version, you will need to implement methods that 

• find stems from words 
• compare two dictionaries (for example, with a method 

called compare_two_dictionaries(self, d_test, d_model) 

• compare two TextModel objects (by comparing their corresponding 

dictionaries pairwise)  
below, this is called compute_similarity(self, model2) 

• output the results in a readable way (this is up to you!) 

• Then, we ask you to use your text-modeler and -matcher to compare 
at least four texts: 

o you'll create at least two text-models, e.g., Rowling and 

Shakespeare 
o you'll find two test texts of your own choice, e.g., your writing 

or others... 

o you should then determine which of the (two or more) text-
models your test-texts are more similar to... 

o you'll write up the results (briefly) in a file named final.txt 

 

Here are guidelines for this part of the project. 

• stem(self, word)  

should return the stem (a string) from the input word. This will be used 

to populate the self.stems dictionary (for the final, not necessarily the 

milestone). You may write your own stemming function, in which case 

we ask you to implement at least 12 different stemming rules. (There 
are many more than that!) We realize - as you do! - that no stemming 
algorithm will be perfect. Don't worry about this. If you would rather 

use an off-the-shelf stemming algorithm, you may download and use 
the Porter stemmer from this site. How do I use that file? To get 
started, I'd suggest these steps: 

o download that file and save it as ps.py in the same folder that 

you're working 
o at the top of your project file, import that file with the line import 

ps 

http://tartarus.org/martin/PorterStemmer/python.txt


o you need to create a PorterStemmer object. Use a line such 

as self.ps = ps.PorterStemmer() within the __init__ method of 

your TextModel class 

o finally, you need a way to call it -- here's where you 
write stem(self,word) 

o Within your stem(self,word) method, you should call the Porter 

stemmer function as follows: self.ps.stem(word, 0, len(word)-1). 

Note that the original version requires passing in the start and 
end indices of the word, but your stem method can include those 

things instead of forcing the user to always generate them. 

   From here, you should be able to test your stem method as follows: 

o Note that you might put these lines at the bottom of your file for 

easy reloading... 
o t = TextModel( 'test' ) 
o print t.stem( "singing" ) 
o print t.stem( "sing" ) 

o The stemmer does pretty well on these two words -- despite 
their rules being quite different! 

Now you're ready to incorporate it into your program! You can also 

write your own parser, but the Porter stemmer is considered one of 
the best -- it's one of the earliest and most widely-used stemmers. 
The examples on this page use the Porter stemmer.  

• You will also need compare_two_dictionaries( self, d_test, d_model 

) and compare_with_two_models( self, model1, model2 ). An example 

motivates these and then provides an outline:  

Motivating example for compare_two_dictionaries 

If our features are words, then our model of all words in a text model will be 
a Python dictionary: the dictionary's keys are each word and each value is 

the number of times the key (word) appears in the document. Here is a 
contrived example of a model dictionary, named d_model. This would arise 
from a 100-word document if 50 of those 100 words had been "love" and 8 

had been "spell" and 42 had been "thou" 

d_model = { "love":50, "spell":8, "thou":42 } 

Next, you want to compare some new test text against this model. Suppose 

a test document gave you a test dictionary named d_test, with 10 words, as 

follows: 



d_test = { "love":3, "thou":1, "potter":2, "spam":4 } 

Our Bayesian similarity score between d_test and d_model will be the 

probability of the 10 d_test words arising from the model of d_model: 

• "love" has 50/100 probability of occurring (each of three times) 
• "thou" has 42/100 probability of occurring (once) 

• "potter" and "spam" don't appear 

We avoid giving "potter" and "spam" probabilities of 0 - multiplying by 0 
would remove all of the information in the score! Instead, we give them a 

"default" frequency of 1, so that each will act as if it had probability 1/100 of 
arising from the d_model model. (You can adapt this... .) If each word was 
independent, we would multiply each of the probabilities: 

prob = (.5*.5*.5)*(.42)*(.01*.01)*(.01*.01*.01*.01) 

which is very small, about 0.0000000000000525. This computes the 
probability in theory... . In practice, however, those very small values are 

hard to work with -- and they can get so small that Python's floating-point 
values can't hold them (they "underflow")! 

So, instead of outright multiplication of those probabilities, we take the log 

of each. (At the top of your file write from math import log.) The log function 

transforms multiplications into additions (and powers into multiplication), so 
our log-probability will be 

log_prob = 3*log(.5) + 1*log(.42) + 2*log(.01) + 4*log(.01) 

which results in the unusual, but more manageable, value of around -30. (I 
think of it as a probability of 10^-30.) Note on logs    Using logs helps avoid the 

values getting too small, but what do those negative numbers mean? If your log-probability 

score is -5, that means the probability has (about) 5 decimal places, i.e., it's about 

0.00001. If another log-probability score was -10, then that second probability is about 

0.00000000001. That latter probability is much less likely than the former one. It's in 

those comparisons of likelihood that this technique works well. More precisely, its e^-30, because 

Python uses the natural log (log-base-e) by default. If you want log-base-10, no worries: use math.log(value,10). 

You'll see that it's about -13.3 for this example, matching the 13 zeros in the small probability above. Since this is about 

making comparisons, however, either way is OK! 

 

Your task is to implement this and return the log_prob for 

the d_test and d_model. Here's a pseudocode outline: 

• Start the log_prob at 0. 



• Let model_total be the total number of items in d_model -- not only 

distinct items, but all of the repetitions of all of the items, added up. 

(You'll need a loop!) 
• Then, for each item in d_test... 

• Check if that item is in d1 at all... 

• If so, add the log of the probability of that item (that it would be 

chosen at random from everything in d_model), times its number of 

appearances in d2. 

• If not, add the same thing, but use, for example, 1.0 as the 

numerator. Be sure to still multiply by its frequency in d_test and be 

sure you use floating-point division for all of your probabilities! 
• Then, you should return the resulting log_prob score 

 
 
 
 

Try it out! 

Try this test (reflecting the above example) of 
your compare_two_dictionaries method: 

t = TextModel( "test" ) 

d_test = { "love":3, "thou":1, "potter":2, "spam":4 } 

d_model = { "love":50, "spell":8, "thou":42 } 

log_prob_score = t.compare_two_dictionaries( d_test, d_model ) 

print "log_prob_score is", log_prob_score 

here is my result: 

log_prob_score is -30.5779632253 

which is log-base-e (the default, natural log). For log-base-10, it is about -13.27 

 

Final step: comparing a test text against two 
models:  
compare_with_two_models(self,m1,m2) 

The ultimate goal of our comparisons is to 

• create two (or more) models, e.g., (Shakespeare vs. Rowling) 



• compare a new, "test" text against those two (or more) models to see 
which one it's (most) close to... 

To do this, you will need to write a method compare_with_two_models( self, 

model1, model2 ) . 

Here's how it will work at the level of Python calls: 

• you'll need to create two (or more) foundational models, for example, 
one named WS (Shakespeare) and one named JKR 

• you will also need to create a third TextModel object -- but this one 

contain be the test data -- this of this third one as the "test text" 

• So, suppose you've created this and named it testtext 

• Then, you would call 
•        testtext.compare_with_two_models( WS, JKR )  # WS is m1,  JKR is 

m2 

in order to compute - and print - the results of the comparisons. 

• Inside the method compare_with_two_models you will need to 

o scale the dictionaries-to-be-compared so that they're the same 
size (see below) 

o compute the ten similarity scores between the dictionaries to be 

compared: 
o 5 scores will be between testtext's five dictionaries and m1's five 

dictionaries 
o 5 scores will be between testtext's five dictionaries and m2's five 

dictionaries 
• You should be sure to print all 10 similarity scores - they're really log-

probability scores - with labels so that a reader known which one is 

which... 
• Then, you'll have the rest of the code decide which of the two 

models, m1 or m2, was more similar to testtext 

• Determining which of the two models is the better match is up to you. 
Some possibilities include 

o boiling down the five scores to a single number -- a sum or a 

weighted sum -- and then simply comparing those two numbers 
o using the five scores as "votes." Since there are an odd number 

of scores, one of the two models must get more votes (more 

scores that are closer to it) -- and you could choose that one as 
the winner. 

o combinations are welcome: 

▪ for example, you could give weighted votes to each of the 
scores, e.g., words are "worth more" than punctuation... 



 

Important: scaling the model dictionaries so that 

they're the same size... 

You may notice that different numbers of items in models will influence the 
similarity score. 

As an example, consider the test dictionary (of only two words): 

d_test = { "love":1, "spam":1 } 

And consider two models the seem to be identical, they're just different 
sizes: 

d_model1 = { "love":5, "potter":5 }     and     d_model2 = { 
"love":50, "potter":50 } 

If you run the following two tests, you'll see that d_test gets a different score 

against each: 

TestText = TextModel( "cs5hw" ); TestText.addTextFromString( 

"spam alien." ) 

M1 = TextModel( "m1" );  M1.addTextFromString( "love "*5 + "spam 

"*4 + "spam." ) 

M2 = TextModel( "m2" );  M2.addTextFromString( "love "*50 + 

"spam "*49 + "spam." ) 

 

# a test WITHOUT scaling (different scores! ... though they 

_shouldn't_ be different) 

print "unscaled vs. 1: ", 

TestText.compare_two_dictionaries(TestText.words, M1.words) 

print "unscaled vs. 2: ", 

TestText.compare_two_dictionaries(TestText.words, M2.words) 

Here are my results - notive that they're different, even though we would 
really want them to be the same! 

unscaled vs. 1:  -2.99573227355 

unscaled vs. 2:  -5.29831736655 

(The above numbers are base-e; the base-10 numbers are about -1.3 and -2.3) The reason tha tthey're 

different is that spam, which appears in neither of the models, gets a much 

higher probability (1/10) in M1 than it does in M2 (1/100). Next, you'll fix 
this! 



 

Fixing the scaling problem with different-size 

dictionaries... 

To fix the problem noted above, the right thing to do is to scale both 
dictionaries to the "same size" - without changing the relative frequency of 
words in each. 

Here are two methods to help with this -- feel free to copy these into 
your TextModel class: 

  

    def get_denominator(self, d): 

        """ gets the total of values in d """ 

        return 1.0*sum(d.values()) 

 

    def scale(self, d, new_denominator): 

        """ returns a NEW dictionary with its values 

            scaled so that they sum to new_denominator 

            must have non-zero old denominator and 

                      non-zero new_denominator! 

        """ 

        new_d = {}  # the new dictionary to be built... 

 

        old_den = self.get_denominator(d) 

        if old_den == 0.0 or new_denominator == 0.0: 

            print "can't scale a dictionary with" 

            print "old or new denominators == 0.0" 

            print "old_den ==", old_den 

            print "new_den ==", new_denominator 

            return new_d  # returns the empty dictionary 

 

        multiplier = new_denominator*1.0/old_den 

        for k in d: # for each key in the old dictionary, d 

            new_d[k] = d[k]*multiplier 

 

        return new_d 

To use them, you would 

• find the size (the "denominator") for each of your two model 

dictionaries 
• find the larger of the two (with max) 

• scale them both to the larger value 

• use the scaled dictionaries instead of the originals 

Try it out - use this scaled version of the previous example: 

TestText = TextModel( "cs5hw" ); TestText.addTextFromString( 

"spam alien." ) 

M1 = TextModel( "m1" );  M1.addTextFromString( "love "*5 + "spam 

"*4 + "spam." ) 

M2 = TextModel( "m2" );  M2.addTextFromString( "love "*50 + 

"spam "*49 + "spam." ) 



 

# Now, WITH the scaling: should give the same (further-from-

zero) scores... 

den1 = TestText.get_denominator(M1.words) 

den2 = TestText.get_denominator(M2.words) 

den_max = max( den1, den2 ) 

scaledwds1 = TestText.scale(M1.words, den_max) 

scaledwds2 = TestText.scale(M2.words, den_max) 

print "scaled vs. 1: ", 

TestText.compare_two_dictionaries(TestText.words, scaledwds1) 

print "scaled vs. 2: ", 

TestText.compare_two_dictionaries(TestText.words, scaledwds2) 

which should result with this:    and about -2.3 if using log-base-10 

scaled vs. 1:  -5.29831736655 

scaled vs. 2:  -5.29831736655 

You should use this scaling in order to make your comparisons more 
meaningful -- otherwise the smaller dictionaries tend to win every time, 
simply because they weight unseen words as more likely. 

 

Testing and an example... 

Here is a small example -- some of your dictionaries may be different, but it 
provides a rough outline of what your output 
from compare_with_two_models could look like. For the record, we've printed all 

of our models' dictionaries below the output of compare_with_two_models - you 

won't need to do this (unless, perhaps, it's part of your debugging...). 

First, the three inputs - two models and one testtext: 

M1 = TextModel( "m1 (shorta)" ); M1.addTextFromString( "This is 

a short sentence. A is a short word." ) 

M2 = TextModel( "m2 (gohens)" ); M2.addTextFromString( "Go hens, 

Go. Go, go hens!! Go, indeed!" ) 

testtext = TextModel( "test" ); testtext.addTextFromString(  "A 

short a is indeed short." ) 

 

# here is how to make the call to compare_with_two_models: 

testtext.compare_with_two_models( M1, M2 ) 

 



Here is our output - your formatting may be different, but this shows one 
possible method for displaying the results. The log-base-10 results are between -4 and -6 for the 

first few scores...) 

Scoring the testtext with name: test 

   against the model with name: m1 (shorta) 

 & against the model with name: m2 (gohens) 

 

Comparing words which yield the scores 

   vs. m1 (shorta) :  -9.53884443895 

   vs. m2 (gohens) :  -13.5923670067 

 

Comparing wordlengths which yield the scores 

   vs. m1 (shorta) :  -9.53884443895 

   vs. m2 (gohens) :  -11.7597855429 

 

Comparing stems which yield the scores 

   vs. m1 (shorta) :  -9.53884443895 

   vs. m2 (gohens) :  -13.5923670067 

 

Comparing sentencelengths which yield the scores 

   vs. m1 (shorta) :  -1.09861228867 

   vs. m2 (gohens) :  -1.09861228867 

 

Comparing punc which yield the scores 

   vs. m1 (shorta) :  0.0 

   vs. m2 (gohens) :  -1.94591014906 

 

 

Tallying votes: 

  Model m1 (shorta): 5 votes 

  Model m2 (gohens): 0 votes 

 

+++   Thus, the testtext has features closer to model m1 

(shorta) 

 

 

Here are the full models we obtained. Your algorithms may count 

punctuation or other features slightly differently: 

Model name: test 

    n. of words: 4 

    n. of word lengths: 4 

    n. of sentence lengths: 1 

    n. of stems: 4 

    n. of punctuation marks: 1 

 

words :  {'a': 2, 'indeed': 1, 'is': 1, 'short': 2} 



wordlengths :  {1: 2, 2: 1, 5: 2, 6: 1} 

stems :  {'a': 2, 'inde': 1, 'is': 1, 'short': 2} 

sentencelengths :  {6: 1} 

punc :  {'.': 1} 

 

 

Model name: m1 (shorta) 

    n. of words: 6 

    n. of word lengths: 5 

    n. of sentence lengths: 1 

    n. of stems: 6 

    n. of punctuation marks: 1 

 

words :  {'a': 3, 'short': 2, 'word': 1, 'sentence': 1, 'this': 1, 'is': 2} 

wordlengths :  {8: 1, 1: 3, 2: 2, 4: 2, 5: 2} 

stems :  {'a': 3, 'short': 2, 'word': 1, 'sentenc': 1, 'is': 2, 'thi': 1} 

sentencelengths :  {5: 2} 

punc :  {'.': 2} 

 

 

Model name: m2 (gohens) 

    n. of words: 3 

    n. of word lengths: 3 

    n. of sentence lengths: 2 

    n. of stems: 3 

    n. of punctuation marks: 3 

 

words :  {'go': 5, 'indeed': 1, 'hens': 2} 

wordlengths :  {2: 5, 4: 2, 6: 1} 

stems :  {'go': 5, 'inde': 1, 'hen': 2} 

sentencelengths :  {2: 1, 3: 2} 

punc :  {'!': 3, ',': 3, '.': 1} 

 

Use your text-modeler! 

Once your TextModel class is complete and you've tested its ability to 

compute match scores, you should choose two or more bodies of text from 
which to create models. For example, our demo used JK Rowling and 
Shakespeare, but you should choose two of your own "foundational" models. 

You are welcome to choose whatever source texts you might like, but if you 
do want to use Shakespeare, here is a .txt file containing the complete 

works of Shakespeare. Don't use this file as-is, however -- you should 

take a look at it and remove the front/back matter that accompanies 
Shakespeare's words (text that explains the file, its origin, etc.) This is true 
of any source file(s) you use -- you should be sure to look them over and do 

whatever human pre-processing is appropriate (and feasible) before 
handling it computationally... . 

Just as examples of comparisons you could make, one could imagine 

• actually comparing Shakespeare and J. K. Rowling 
• comparing NYTimes and WSJournal articles 
• comparing Big Bang Theory and Arrested Development 

• choosing a more abstract comparison (one writing style vs. another) 

http://www.gutenberg.org/files/100/old/shaks12.txt
http://www.gutenberg.org/files/100/old/shaks12.txt


• choosing a more concrete comparison (Sheldon vs. Leonard) 

Once you have two "foundational" models -- representing two authors or 

artists, or styles (or Big Bang Theory characters), you should run at least 
two texts against each of them: 

• you should run one of the original texts against each, in order to make 

sure that it scores better against the correct model than against the 
other one! 

• you should also run an unrelated text against each -- and see which 

it resembles more closely 

For example "unrelated" texts, you could see if 

• your Writ1 paper (or thesis) is more like W.S. or J.K.R. 

• the Chicago Tribune is more like the NYT or the WSJ 
• Bart Simpson is more like Michael Bluth or Raj Koothrappali 

or any other comparison you would like to brainstorm... . 

 

Your analysis... 

After running your test (or tests), you should write up, in a final.txt file, an 

explanation of 

• the two or more categories you used as your "foundational" models 

• the other two (or more) test texts you used to compare against them 
• the results of all of those tests and comparisons - how well did it do? 

What kinds of similarities were most pronounced 

• any additional tests you ran (more are great!) 
• please include the detailed scores of at least one of the tests, printed 

out and formatted in an easy-to-read manner, as well (help the 

graders!) 

Also, be sure to describe how the graders can run your tests -- you will want 
to make this as easy as possible to do, so write helper functions that will 

help the graders do so! Include in your final.zip archive whatever files (if 
they're not too big) are needed to create your models and try it out... . 

Submission 



Be sure to submit everything in a zip file named textid_final.zip to 

the final spot in the submission system... 

Congratulations on building a Bayesian text-classification system (and on 
writing more like Rowling than Shakespeare!) 

 

Some additional background on Bayesian 

classification 

This project's basic algorithm is known as a Naive Bayes Classifier. Despite 
the "naive" in its name, this classifier has been hugely successful in 

distinguishing spam from non-spam ("ham") emails and, in different forms, 
it is used for many classification problems. 

The approach boils down to computing the likelihood score of a set of new 

text features, given a dictionary of those features' appearances in the 
original text. The reason that the algorithm is called "naive" is that we make 
the assumption that each feature is independent. Thus, we assume that the 

appearance of the word spell does not depend on the appearance of the 

word potter -- and that this independence holds for all pairs of words and 

pairs of features throughout the text. This assumption is certainly not true, 
but that turns out not to matter in many situations! 

With this assumption, Wikipedia derives the algorithm and summarizes it in 
a form I'd describe as less-than-illuminating: 

   

Expressing this idea computationally is actually more natural than this 
notation - and is the purpose of this project. The central function for 
computing similarity - and the implementation of that formula above - is 

in compare_two_dictionaries( self, d_test, d_model ) 

 

Other helps... 

Some folks end up with text files that are not-quite-all-plain-text... The 
additional characters are troublesome, so there is a way to get rid of them. 

http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Naive_Bayes_classifier


This remove_non_ascii is a small function that removes all non-plain-ascii 

characters from a string s. It includes a little bit of testing code, as well: 

# -*- coding: utf-8 -*- 

import string 

 

def remove_non_ascii( s ): 

    """ removes non-plain-ascii characters  

        returns a copy of s with no such chars... 

    """ 

    new_s = '' 

    for c in s: 

        if c in string.printable: 

            new_s = new_s + c 

    return new_s 

 

 

# for testing the above function: 

s = "This\nhas\n\xe2\x80\x99 some crazy chars." 

new_s = remove_non_ascii( s ) 

print "    s is", repr(s) 

print "new_s is", repr(new_s) 

 

 
 

Extras... 

There are lots of additional directions you might consider, if you'd like to 

take your Text ID project further. 

If you do try one of these extras, be sure to note it in your final.txt file -- 

along with any instructions/analysis that go along with it! 

More features/feature analysis 

You can create/invent one or more features different than the four required 
above. Then, using texts with known classification analyze which features 

are better at classifying than others (at least for your datasets). 

Present your analysis in your final.txt file. 

Hierarchical models 



Build a hierarchical model in which an object of TextModel contains a list 

of TextModels! 

This would be used, for example, to divide a single model of "Shakespeare" 
into two sub-models, perhaps 

• Shakespeare comedies 

• Shakespeare trajedies 

More finely, it could be used to divide a model of "Romeo and Juliet" into a 
"Romeo" submodel and a "Juliet" submodel. 

Similar subdivisions could be made for other sorts of source texts, as well. 
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