
Text ID OLD

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/TextClouds on
3/22/2107

This was NOT used in fall 2015

Instead you want this page for the up-to-date TextID project

This project offers you an opportunity to use Python to develop a statistical
model of text that will allow you to "ID" an author or style -- with varying

degrees of success -- from samples of text...

Milestone requirements for Text ID

You should have a TextModel class along with these methods, working at

least to the extent described:

• a working constructor and __repr__: a version of each is provided in

the description

• readTextFromFile(self, filename): should take in a filename (a string)

and should return all of the text in that file
• addTextFromString(self, s): should use the text in the input string s to

add to the self.sentencelengths, self.words, and self.wordlengths
dictionaries (the self.stems dictionary should be working for the final
deliverable, but does not need to work for the milestone)

• printAllDictionaries(self): this method simply prints all of

the TextModel's dictionaries (it's especially helpful for debugging)

• saveModelToFile(self): you need this method to write all of

the TextModel' dictionaries to a file. The file should be named using the

string in self.name with the file extension .txt

• readModelFromFile(self): This method should open the file (named as

described above) and read the dictionaries into the text model

https://www.cs.hmc.edu/twiki/bin/view/CS5/TextClouds
https://www.cs.hmc.edu/twiki/bin/view/CS5/TextID

Be sure to zip up the folder containing your Text ID project file (or files) and
name it textid_milestone.zip -- then submit that in the right spot for Hw#12!

Background

Statistical models of text are one way to quantify how similar one piece of
text is to another. Such models were used as evidence that the book The
Cuckoo's Calling was written by J. K. Rowling (using the name Robert

Galbraith) in the summer of 2013. Details on that story and the analysis
done appear at this link.

The comparative analysis of those works used simple models -- perhaps

surprisingly simple -- of an "author's style," for example, the distribution of
word lengths in a document. The four "text features" that we ask you to
implement for this project are

• The distribution of words used by an author
• The distribution of word lengths (noted above)
• The distribution of word-stems used (e.g., "spam" and "spamming"

would have the same stem)
• The distribution of sentence-lengths used
• plus, the project asks you to include one more "text feature" of your

own design
o for example, you could use punctuation in some way
o or compute something else about the text - it could be the

number of words ending in "ness," something about
capitalization, or anything else you can compute or count using
Python...

Perhaps the most-common and most-successful application of this kind of
textual analysis is Spam detection and filtering.

Getting started: the TextModel overview

To create your Bayesian classifier, you will extend your Markov text model
with a more complete statistical model of a body of text.

All of the examples above have used words as features and word-frequency
dictionaries as models. Here, we provide a constructor to get you started
with the following empty dictionaries

http://www.salon.com/2013/08/23/how_j_k_rowling_was_exposed_as_robert_galbraith_partner/
http://en.wikipedia.org/wiki/Bayesian_spam_filtering

• self.words
• self.wordlengths
• self.stems
• self.sentencelengths

• remember that you'll need one more dictionary for a text-feature of
your own design!

Computing word lengths from words won't be a problem. However,
computing stems and sentence lengths are an additional part of the
challenge. Some starting functions and other hints are below.

TextModel starter code

To get started, here is part of a constructor, __init__ and string-conversion

function, __repr__:

class TextModel:

 def __init__(self, name):

 """ the constructor for the TextModel class

 all dictionaries are started at empty

 """

 self.name = name

 self.words = {} # starts empty

 self.wordlengths = {}

 self.stems = {}

 self.sentencelengths = {}

 # you will want another dictionary for your text feature

 def __repr__(self):

 """ this method creates the string version of TextModel

objects

 """

 s = "\nModel name: " + str(self.name) + "\n"

 s += " n. of words: " + str(len(self.words)) + "\n"

 s += " n. of word lengths: " +

str(len(self.wordlengths)) + "\n"

 s += " n. of sentence lengths: " +

str(len(self.sentencelengths)) + "\n"

 s += " n. of stems: " + str(len(self.stems)) + "\n"

 # you will likely want another line for your custom

text-feature

 return s

In addition, here are several methods you should implement for
the milestone part of the project:

• addTextFromString(self, s): should use the text in the input string s to

add to the self.sentencelengths, self.words, and self.wordlengths
dictionaries (the self.stems dictionary should be working for the final

deliverable, but does not need to work for the milestone)
• readTextFromFile(self, filename): should take in a filename (a string)

and should return all of the text in that file

• printAllDictionaries(self): this method simply prints all of

the TextModel's dictionaries (it's especially helpful for debugging)

• saveModelToFile(self): you need this method to write all of

the TextModel' dictionaries to a file. The file should be named using the

string in self.name with the file extension .txt

• readModelFromFile(self): This method should open the file (named as

described above) and read the dictionaries into the text model

• you should create a method called cleanText(self, text): use this as a

starting point!
• def clean(self,w):

• for p in string.punctuation:

• w = w.replace(p,'')

• return w.lower()

You will need import string at the top!

Hints and other methods

One of the best approaches to all new software projects is to make small

examples work at first.

Here is a start for the addTextFromString method. Certainly you'll want to

expand this.

 def addTextFromString(self, s):

 """ analyzes the string s and adds its pieces

 to all of the dictionaries in this text model

 """

 LoW = s.split()

 for w in LoW:

 if w not in self.words: self.words[w] = 1

 else: self.words[w] += 1

Throughout the project, you may end up improving and expanding this

function, but it's important to get it working early at a basic level, i.e.,

adding words to the self.words dictionary.

For the milestone, you only need to have

the self.words and self.wordlengths dictionaries working. Here is a test

to make sure you're on track. Note that this example has all five dictionaries
working, but for the milestone you only need words, wordlengths, and

sentencelengths working!

 >>> T = TextModel("test")

 >>> T.addTextFromString("This sentence has five

words.")

 >>> print T

 Model name: test

 n. of words: 5

 n. of word lengths: 4

 n. of sentence lengths: 1

 n. of stems: 5

 n. of punctuation marks: 1 # for my implementation

- your may vary!

 >>> T.words

 {'this': 1, 'has': 1, 'five': 1, 'words': 1,

'sentence': 1}

 >>> T.wordlengths

 {8: 1, 3: 1, 4: 2, 5: 1}

 >>> T.sentencelengths

 {5: 1}

 >>> T.stems

 {'sentenc': 1, 'word': 1, 'ha': 1, 'five': 1, 'thi':

1}

 # I used the porter stemmer - see below

 >>> T.punc

 {'.': 1}

 # dictionaries don't have an order, so different

orderings are OK

Do be sure to run the above tests or others like it, to make sure your code is

working thus far... !

• readTextFromFile(self, filename)

augments the model -- again, all of the dictionaries -- with the text in
file filename. Your best bet here is to open the file, read all the text

into a string, and then call self.addTextFromString on that string! That

way, all of the functionality you add to addTextFromString will be used

by this file-handler, as well! You may want to refer to your Markov
text-generation code to remind you how file-handling works!

Note that this is very different than
the readModelFromFile method: readTextFromFile reads a plain-text file

with prose in order to model it. The readModelFromFile will read in from

a file that you write a list of Python dictionaries, i.e., an already-
created model.

• cleanText(self, s)

"cleans" the text in string s in a reasonable way. This does not have to

be perfect -- in fact, it can't be. But, it should make sure punctuation
is removed (after counting sentences, to be sure!) It should also

ensure that a list of words (all lowercase) is returned. Some people
write two "cleaning" functions -- one to clean the full string of text and
another to break it into words and clean the words. It's up to you.

Helpful hints:
Hint #1: You will find the built-in string

methods replace and lower helpful -- try this example out in your

Python shell:
• s = "Ms. Rowling writes."

• print s

• s = s.replace("Ms.", "Ms") # replace "Ms." with "Ms"

• print s

• s = s.lower()

• print s

Warning! Do not use the function remAll that we wrote using

recursion -- you'll run out of recursive stack on large files!!

• saveModelToFile(self)

This method should create a list of all of self's dictionaries and save

them to a file that uses the string self.name as its name, with .txt as

its file extension. See the next method for a set of example tests... .

Here is a small function to use as a starter - but you'll definitely need
to adapt it to make it a working method of your TextModel class:

• def saveListOfTwoDs():

• """ starter function - be sure to adapt! """

• # for now, L is a list of two dictionaries

• # you will want it to be a list of _all_ your dictionaries!

• L = [{"a":97, "b": 98}, {"spam":42}]

•

• # we open the file into which to store L

• f = open("thefile.txt", "w") # "w" == "write"

•

• # print the list L into the file, then close it

• print >> f, L

• f.close()

• # that's it!

You should be able to test this with saveList(), and it should make a

short file named thefile.txt containing that list of two dictionaries.

• readModelFromFile(self)

This is the complementary method to saveModelToFile method, above.

Here is a starting point. Again, make sure this works -- and then you'll

need to adapt it to your TextModel class:
• def readListOfTwoDs():

• """ starter function - matches saveList() """

• # open the file for reading

• f = open("thefile.txt", "r") # "r" == "read"

•

• # we read _all_ of the contents into the string data

• data = f.read()

• f.close()

•

• # Python magic! We _eval_ the string to get the list of 2

dictionaries

• L = eval(data)

•

• # We then unpack into two different names

• d1, d2 = L # gives each of the two a different name

• print "d1 is", d1

• print "d2 is", d2

• print 'd1["b"] is', d1["b"]

• # that's it!

Run this readList function after you run saveList.

Additional methods for the final portion of the

project...

For the final version, you will need to implement methods that

• find stems from words
• compare two dictionaries (for example, with a method

called compare_two_dictionaries(self, d_test, d_model)

• compare two TextModel objects (by comparing their corresponding

dictionaries pairwise)
below, this is called compute_similarity(self, model2)

• output the results in a readable way (this is up to you!)

• Then, we ask you to use your text-modeler and -matcher to compare
at least four texts:

o you'll create at least two text-models, e.g., Rowling and

Shakespeare
o you'll find two test texts of your own choice, e.g., your writing

or others...

o you should then determine which of the (two or more) text-
models your test-texts are more similar to...

o you'll write up the results (briefly) in a file named final.txt

Here are guidelines for this part of the project.

• stem(self, word)

should return the stem (a string) from the input word. This will be used

to populate the self.stems dictionary (for the final, not necessarily the

milestone). You may write your own stemming function, in which case

we ask you to implement at least 12 different stemming rules. (There
are many more than that!) We realize - as you do! - that no stemming
algorithm will be perfect. Don't worry about this. If you would rather

use an off-the-shelf stemming algorithm, you may download and use
the Porter stemmer from this site. How do I use that file? To get
started, I'd suggest these steps:

o download that file and save it as ps.py in the same folder that

you're working
o at the top of your project file, import that file with the line import

ps

http://tartarus.org/martin/PorterStemmer/python.txt

o you need to create a PorterStemmer object. Use a line such

as self.ps = ps.PorterStemmer() within the __init__ method of

your TextModel class

o finally, you need a way to call it -- here's where you
write stem(self,word)

o Within your stem(self,word) method, you should call the Porter

stemmer function as follows: self.ps.stem(word, 0, len(word)-1).

Note that the original version requires passing in the start and
end indices of the word, but your stem method can include those

things instead of forcing the user to always generate them.

 From here, you should be able to test your stem method as follows:

o Note that you might put these lines at the bottom of your file for

easy reloading...
o t = TextModel('test')
o print t.stem("singing")
o print t.stem("sing")

o The stemmer does pretty well on these two words -- despite
their rules being quite different!

Now you're ready to incorporate it into your program! You can also

write your own parser, but the Porter stemmer is considered one of
the best -- it's one of the earliest and most widely-used stemmers.
The examples on this page use the Porter stemmer.

• You will also need compare_two_dictionaries(self, d_test, d_model

) and compare_with_two_models(self, model1, model2). An example

motivates these and then provides an outline:

Motivating example for compare_two_dictionaries

If our features are words, then our model of all words in a text model will be
a Python dictionary: the dictionary's keys are each word and each value is

the number of times the key (word) appears in the document. Here is a
contrived example of a model dictionary, named d_model. This would arise
from a 100-word document if 50 of those 100 words had been "love" and 8

had been "spell" and 42 had been "thou"

d_model = { "love":50, "spell":8, "thou":42 }

Next, you want to compare some new test text against this model. Suppose

a test document gave you a test dictionary named d_test, with 10 words, as

follows:

d_test = { "love":3, "thou":1, "potter":2, "spam":4 }

Our Bayesian similarity score between d_test and d_model will be the

probability of the 10 d_test words arising from the model of d_model:

• "love" has 50/100 probability of occurring (each of three times)
• "thou" has 42/100 probability of occurring (once)

• "potter" and "spam" don't appear

We avoid giving "potter" and "spam" probabilities of 0 - multiplying by 0
would remove all of the information in the score! Instead, we give them a

"default" frequency of 1, so that each will act as if it had probability 1/100 of
arising from the d_model model. (You can adapt this... .) If each word was
independent, we would multiply each of the probabilities:

prob = (.5*.5*.5)*(.42)*(.01*.01)*(.01*.01*.01*.01)

which is very small, about 0.0000000000000525. This computes the
probability in theory... . In practice, however, those very small values are

hard to work with -- and they can get so small that Python's floating-point
values can't hold them (they "underflow")!

So, instead of outright multiplication of those probabilities, we take the log

of each. (At the top of your file write from math import log.) The log function

transforms multiplications into additions (and powers into multiplication), so
our log-probability will be

log_prob = 3*log(.5) + 1*log(.42) + 2*log(.01) + 4*log(.01)

which results in the unusual, but more manageable, value of around -30. (I
think of it as a probability of 10^-30.) Note on logs Using logs helps avoid the

values getting too small, but what do those negative numbers mean? If your log-probability

score is -5, that means the probability has (about) 5 decimal places, i.e., it's about

0.00001. If another log-probability score was -10, then that second probability is about

0.00000000001. That latter probability is much less likely than the former one. It's in

those comparisons of likelihood that this technique works well. More precisely, its e^-30, because

Python uses the natural log (log-base-e) by default. If you want log-base-10, no worries: use math.log(value,10).

You'll see that it's about -13.3 for this example, matching the 13 zeros in the small probability above. Since this is about

making comparisons, however, either way is OK!

Your task is to implement this and return the log_prob for

the d_test and d_model. Here's a pseudocode outline:

• Start the log_prob at 0.

• Let model_total be the total number of items in d_model -- not only

distinct items, but all of the repetitions of all of the items, added up.

(You'll need a loop!)
• Then, for each item in d_test...

• Check if that item is in d1 at all...

• If so, add the log of the probability of that item (that it would be

chosen at random from everything in d_model), times its number of

appearances in d2.

• If not, add the same thing, but use, for example, 1.0 as the

numerator. Be sure to still multiply by its frequency in d_test and be

sure you use floating-point division for all of your probabilities!
• Then, you should return the resulting log_prob score

Try it out!

Try this test (reflecting the above example) of
your compare_two_dictionaries method:

t = TextModel("test")

d_test = { "love":3, "thou":1, "potter":2, "spam":4 }

d_model = { "love":50, "spell":8, "thou":42 }

log_prob_score = t.compare_two_dictionaries(d_test, d_model)

print "log_prob_score is", log_prob_score

here is my result:

log_prob_score is -30.5779632253

which is log-base-e (the default, natural log). For log-base-10, it is about -13.27

Final step: comparing a test text against two
models:
compare_with_two_models(self,m1,m2)

The ultimate goal of our comparisons is to

• create two (or more) models, e.g., (Shakespeare vs. Rowling)

• compare a new, "test" text against those two (or more) models to see
which one it's (most) close to...

To do this, you will need to write a method compare_with_two_models(self,

model1, model2) .

Here's how it will work at the level of Python calls:

• you'll need to create two (or more) foundational models, for example,
one named WS (Shakespeare) and one named JKR

• you will also need to create a third TextModel object -- but this one

contain be the test data -- this of this third one as the "test text"

• So, suppose you've created this and named it testtext

• Then, you would call
• testtext.compare_with_two_models(WS, JKR) # WS is m1, JKR is

m2

in order to compute - and print - the results of the comparisons.

• Inside the method compare_with_two_models you will need to

o scale the dictionaries-to-be-compared so that they're the same
size (see below)

o compute the ten similarity scores between the dictionaries to be

compared:
o 5 scores will be between testtext's five dictionaries and m1's five

dictionaries
o 5 scores will be between testtext's five dictionaries and m2's five

dictionaries
• You should be sure to print all 10 similarity scores - they're really log-

probability scores - with labels so that a reader known which one is

which...
• Then, you'll have the rest of the code decide which of the two

models, m1 or m2, was more similar to testtext

• Determining which of the two models is the better match is up to you.
Some possibilities include

o boiling down the five scores to a single number -- a sum or a

weighted sum -- and then simply comparing those two numbers
o using the five scores as "votes." Since there are an odd number

of scores, one of the two models must get more votes (more

scores that are closer to it) -- and you could choose that one as
the winner.

o combinations are welcome:

▪ for example, you could give weighted votes to each of the
scores, e.g., words are "worth more" than punctuation...

Important: scaling the model dictionaries so that

they're the same size...

You may notice that different numbers of items in models will influence the
similarity score.

As an example, consider the test dictionary (of only two words):

d_test = { "love":1, "spam":1 }

And consider two models the seem to be identical, they're just different
sizes:

d_model1 = { "love":5, "potter":5 } and d_model2 = {
"love":50, "potter":50 }

If you run the following two tests, you'll see that d_test gets a different score

against each:

TestText = TextModel("cs5hw"); TestText.addTextFromString(

"spam alien.")

M1 = TextModel("m1"); M1.addTextFromString("love "*5 + "spam

"*4 + "spam.")

M2 = TextModel("m2"); M2.addTextFromString("love "*50 +

"spam "*49 + "spam.")

a test WITHOUT scaling (different scores! ... though they

shouldn't be different)

print "unscaled vs. 1: ",

TestText.compare_two_dictionaries(TestText.words, M1.words)

print "unscaled vs. 2: ",

TestText.compare_two_dictionaries(TestText.words, M2.words)

Here are my results - notive that they're different, even though we would
really want them to be the same!

unscaled vs. 1: -2.99573227355

unscaled vs. 2: -5.29831736655

(The above numbers are base-e; the base-10 numbers are about -1.3 and -2.3) The reason tha tthey're

different is that spam, which appears in neither of the models, gets a much

higher probability (1/10) in M1 than it does in M2 (1/100). Next, you'll fix
this!

Fixing the scaling problem with different-size

dictionaries...

To fix the problem noted above, the right thing to do is to scale both
dictionaries to the "same size" - without changing the relative frequency of
words in each.

Here are two methods to help with this -- feel free to copy these into
your TextModel class:

 def get_denominator(self, d):

 """ gets the total of values in d """

 return 1.0*sum(d.values())

 def scale(self, d, new_denominator):

 """ returns a NEW dictionary with its values

 scaled so that they sum to new_denominator

 must have non-zero old denominator and

 non-zero new_denominator!

 """

 new_d = {} # the new dictionary to be built...

 old_den = self.get_denominator(d)

 if old_den == 0.0 or new_denominator == 0.0:

 print "can't scale a dictionary with"

 print "old or new denominators == 0.0"

 print "old_den ==", old_den

 print "new_den ==", new_denominator

 return new_d # returns the empty dictionary

 multiplier = new_denominator*1.0/old_den

 for k in d: # for each key in the old dictionary, d

 new_d[k] = d[k]*multiplier

 return new_d

To use them, you would

• find the size (the "denominator") for each of your two model

dictionaries
• find the larger of the two (with max)

• scale them both to the larger value

• use the scaled dictionaries instead of the originals

Try it out - use this scaled version of the previous example:

TestText = TextModel("cs5hw"); TestText.addTextFromString(

"spam alien.")

M1 = TextModel("m1"); M1.addTextFromString("love "*5 + "spam

"*4 + "spam.")

M2 = TextModel("m2"); M2.addTextFromString("love "*50 +

"spam "*49 + "spam.")

Now, WITH the scaling: should give the same (further-from-

zero) scores...

den1 = TestText.get_denominator(M1.words)

den2 = TestText.get_denominator(M2.words)

den_max = max(den1, den2)

scaledwds1 = TestText.scale(M1.words, den_max)

scaledwds2 = TestText.scale(M2.words, den_max)

print "scaled vs. 1: ",

TestText.compare_two_dictionaries(TestText.words, scaledwds1)

print "scaled vs. 2: ",

TestText.compare_two_dictionaries(TestText.words, scaledwds2)

which should result with this: and about -2.3 if using log-base-10

scaled vs. 1: -5.29831736655

scaled vs. 2: -5.29831736655

You should use this scaling in order to make your comparisons more
meaningful -- otherwise the smaller dictionaries tend to win every time,
simply because they weight unseen words as more likely.

Testing and an example...

Here is a small example -- some of your dictionaries may be different, but it
provides a rough outline of what your output
from compare_with_two_models could look like. For the record, we've printed all

of our models' dictionaries below the output of compare_with_two_models - you

won't need to do this (unless, perhaps, it's part of your debugging...).

First, the three inputs - two models and one testtext:

M1 = TextModel("m1 (shorta)"); M1.addTextFromString("This is

a short sentence. A is a short word.")

M2 = TextModel("m2 (gohens)"); M2.addTextFromString("Go hens,

Go. Go, go hens!! Go, indeed!")

testtext = TextModel("test"); testtext.addTextFromString("A

short a is indeed short.")

here is how to make the call to compare_with_two_models:

testtext.compare_with_two_models(M1, M2)

Here is our output - your formatting may be different, but this shows one
possible method for displaying the results. The log-base-10 results are between -4 and -6 for the

first few scores...)

Scoring the testtext with name: test

 against the model with name: m1 (shorta)

 & against the model with name: m2 (gohens)

Comparing words which yield the scores

 vs. m1 (shorta) : -9.53884443895

 vs. m2 (gohens) : -13.5923670067

Comparing wordlengths which yield the scores

 vs. m1 (shorta) : -9.53884443895

 vs. m2 (gohens) : -11.7597855429

Comparing stems which yield the scores

 vs. m1 (shorta) : -9.53884443895

 vs. m2 (gohens) : -13.5923670067

Comparing sentencelengths which yield the scores

 vs. m1 (shorta) : -1.09861228867

 vs. m2 (gohens) : -1.09861228867

Comparing punc which yield the scores

 vs. m1 (shorta) : 0.0

 vs. m2 (gohens) : -1.94591014906

Tallying votes:

 Model m1 (shorta): 5 votes

 Model m2 (gohens): 0 votes

+++ Thus, the testtext has features closer to model m1

(shorta)

Here are the full models we obtained. Your algorithms may count

punctuation or other features slightly differently:

Model name: test

 n. of words: 4

 n. of word lengths: 4

 n. of sentence lengths: 1

 n. of stems: 4

 n. of punctuation marks: 1

words : {'a': 2, 'indeed': 1, 'is': 1, 'short': 2}

wordlengths : {1: 2, 2: 1, 5: 2, 6: 1}

stems : {'a': 2, 'inde': 1, 'is': 1, 'short': 2}

sentencelengths : {6: 1}

punc : {'.': 1}

Model name: m1 (shorta)

 n. of words: 6

 n. of word lengths: 5

 n. of sentence lengths: 1

 n. of stems: 6

 n. of punctuation marks: 1

words : {'a': 3, 'short': 2, 'word': 1, 'sentence': 1, 'this': 1, 'is': 2}

wordlengths : {8: 1, 1: 3, 2: 2, 4: 2, 5: 2}

stems : {'a': 3, 'short': 2, 'word': 1, 'sentenc': 1, 'is': 2, 'thi': 1}

sentencelengths : {5: 2}

punc : {'.': 2}

Model name: m2 (gohens)

 n. of words: 3

 n. of word lengths: 3

 n. of sentence lengths: 2

 n. of stems: 3

 n. of punctuation marks: 3

words : {'go': 5, 'indeed': 1, 'hens': 2}

wordlengths : {2: 5, 4: 2, 6: 1}

stems : {'go': 5, 'inde': 1, 'hen': 2}

sentencelengths : {2: 1, 3: 2}

punc : {'!': 3, ',': 3, '.': 1}

Use your text-modeler!

Once your TextModel class is complete and you've tested its ability to

compute match scores, you should choose two or more bodies of text from
which to create models. For example, our demo used JK Rowling and
Shakespeare, but you should choose two of your own "foundational" models.

You are welcome to choose whatever source texts you might like, but if you
do want to use Shakespeare, here is a .txt file containing the complete

works of Shakespeare. Don't use this file as-is, however -- you should

take a look at it and remove the front/back matter that accompanies
Shakespeare's words (text that explains the file, its origin, etc.) This is true
of any source file(s) you use -- you should be sure to look them over and do

whatever human pre-processing is appropriate (and feasible) before
handling it computationally... .

Just as examples of comparisons you could make, one could imagine

• actually comparing Shakespeare and J. K. Rowling
• comparing NYTimes and WSJournal articles
• comparing Big Bang Theory and Arrested Development

• choosing a more abstract comparison (one writing style vs. another)

http://www.gutenberg.org/files/100/old/shaks12.txt
http://www.gutenberg.org/files/100/old/shaks12.txt

• choosing a more concrete comparison (Sheldon vs. Leonard)

Once you have two "foundational" models -- representing two authors or

artists, or styles (or Big Bang Theory characters), you should run at least
two texts against each of them:

• you should run one of the original texts against each, in order to make

sure that it scores better against the correct model than against the
other one!

• you should also run an unrelated text against each -- and see which

it resembles more closely

For example "unrelated" texts, you could see if

• your Writ1 paper (or thesis) is more like W.S. or J.K.R.

• the Chicago Tribune is more like the NYT or the WSJ
• Bart Simpson is more like Michael Bluth or Raj Koothrappali

or any other comparison you would like to brainstorm... .

Your analysis...

After running your test (or tests), you should write up, in a final.txt file, an

explanation of

• the two or more categories you used as your "foundational" models

• the other two (or more) test texts you used to compare against them
• the results of all of those tests and comparisons - how well did it do?

What kinds of similarities were most pronounced

• any additional tests you ran (more are great!)
• please include the detailed scores of at least one of the tests, printed

out and formatted in an easy-to-read manner, as well (help the

graders!)

Also, be sure to describe how the graders can run your tests -- you will want
to make this as easy as possible to do, so write helper functions that will

help the graders do so! Include in your final.zip archive whatever files (if
they're not too big) are needed to create your models and try it out... .

Submission

Be sure to submit everything in a zip file named textid_final.zip to

the final spot in the submission system...

Congratulations on building a Bayesian text-classification system (and on
writing more like Rowling than Shakespeare!)

Some additional background on Bayesian

classification

This project's basic algorithm is known as a Naive Bayes Classifier. Despite
the "naive" in its name, this classifier has been hugely successful in

distinguishing spam from non-spam ("ham") emails and, in different forms,
it is used for many classification problems.

The approach boils down to computing the likelihood score of a set of new

text features, given a dictionary of those features' appearances in the
original text. The reason that the algorithm is called "naive" is that we make
the assumption that each feature is independent. Thus, we assume that the

appearance of the word spell does not depend on the appearance of the

word potter -- and that this independence holds for all pairs of words and

pairs of features throughout the text. This assumption is certainly not true,
but that turns out not to matter in many situations!

With this assumption, Wikipedia derives the algorithm and summarizes it in
a form I'd describe as less-than-illuminating:

Expressing this idea computationally is actually more natural than this
notation - and is the purpose of this project. The central function for
computing similarity - and the implementation of that formula above - is

in compare_two_dictionaries(self, d_test, d_model)

Other helps...

Some folks end up with text files that are not-quite-all-plain-text... The
additional characters are troublesome, so there is a way to get rid of them.

http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

This remove_non_ascii is a small function that removes all non-plain-ascii

characters from a string s. It includes a little bit of testing code, as well:

-*- coding: utf-8 -*-

import string

def remove_non_ascii(s):

 """ removes non-plain-ascii characters

 returns a copy of s with no such chars...

 """

 new_s = ''

 for c in s:

 if c in string.printable:

 new_s = new_s + c

 return new_s

for testing the above function:

s = "This\nhas\n\xe2\x80\x99 some crazy chars."

new_s = remove_non_ascii(s)

print " s is", repr(s)

print "new_s is", repr(new_s)

Extras...

There are lots of additional directions you might consider, if you'd like to

take your Text ID project further.

If you do try one of these extras, be sure to note it in your final.txt file --

along with any instructions/analysis that go along with it!

More features/feature analysis

You can create/invent one or more features different than the four required
above. Then, using texts with known classification analyze which features

are better at classifying than others (at least for your datasets).

Present your analysis in your final.txt file.

Hierarchical models

Build a hierarchical model in which an object of TextModel contains a list

of TextModels!

This would be used, for example, to divide a single model of "Shakespeare"
into two sub-models, perhaps

• Shakespeare comedies

• Shakespeare trajedies

More finely, it could be used to divide a model of "Romeo and Juliet" into a
"Romeo" submodel and a "Juliet" submodel.

Similar subdivisions could be made for other sorts of source texts, as well.

	Text ID OLD
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/TextClouds on 3/22/2107
	This was NOT used in fall 2015
	Milestone requirements for Text ID

	Background
	Getting started: the TextModel overview
	TextModel starter code
	Hints and other methods
	Additional methods for the final portion of the project...
	Motivating example for compare_two_dictionaries
	Try it out!
	Final step: comparing a test text against two models: compare_with_two_models(self,m1,m2)
	Important: scaling the model dictionaries so that they're the same size...
	Fixing the scaling problem with different-size dictionaries...

	Testing and an example...
	Use your text-modeler!
	Your analysis...
	Submission
	Some additional background on Bayesian classification
	Other helps...
	Extras...
	More features/feature analysis
	Hierarchical models

