
Gold Problem 2: Sorting out Caesar!

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/CaesarCipherGold
on 3/22/2017

[60 points; individual or pair] filename: hw3pr2.py

This problem asks you to write several functions using functional
programming, i.e., conditionals, recursion, and/or list comprehensions.

For each one, be sure to

• name the function as specified including capitalization - this helps
us test them smoothly

• include a docstring that briefly explains the function's inputs and what

it does

Function to write #1: encipher(S, n)

Write the function encipher(S , n) that takes as input a string S and a non-

negative integer n between 0 and 25. Then, encipher should return a new

string in which the letters in S have been "rotated" by n characters forward in

the alphabet, wrapping around as needed.

For this problem, you should assume that upper-case letters are "rotated" to
upper-case letters, lower-case letters are "rotated" to lower-case letters, and
all non-alphabetic characters are left unchanged. For example, if we were to

shift the letter 'y' by 3, we would get 'b' and if we were to shift the

letter 'Y' by 3 we would get 'B'. (In python, you can use the test if 'a' <= c

<= 'z': to determine if a character c is between 'a' and 'z' in the alphabet.)

You can write encipher any way you like as long as you use functional

programming -- that is, feel free to use conditionals, recursion, and/or list
comprehensions.

https://www.cs.hmc.edu/twiki/bin/view/CS5/CaesarCipherGold

You might use the class suggestion of writing a helper function that "rotates"
a single character by n spots, wrapping around the alphabet as appropriate.

In lecture we looked at how that might work. Then, you could use this helper
function to encipher your string. It's up to you how you do this!

That said, for rotating, keep in mind that the built-in

functions ord and chr convert from single-character strings to integers and

back:

• For example, ord('a') outputs 97

• and chr(97) outputs 'a'.

Remember that

• uppercase letters wrap around the alphabet to uppercase letters
• lowercase letters wrap always to lowercase letters

• non-letters do not wrap at all!

Hints, part 1... Write rot(c,n)!

• Write a function rot(c,n) that rotates c, a single character, forward

by n spots in the alphabet.

• We wrote rot13(c) in class -- it's very close to rot(c,n)!

• Remember that you'll need to wrap the alphabet (as rot13 did)

and leave non-alphabetic characters unchanged
• Test out your rot(c,n) function to make sure it works:
• rot('a',2) --> 'c'

• rot('y',2) --> 'a'

• rot('A',3) --> 'D'

• rot('Y',3) --> 'B'

 rot(' ',4) --> ' '

Hints, part 2 If you have rot(c,n), you're nearly there!

• With rot(c,n), this problem is identical to the dna_to_rna (transcribe)

problem!

• That is, you can handle one letter at a time (using rot(c,n)) in just the

same way... .

• Alternatively, you can use a list comprehension to apply rot(c,n) many

times.
• If you do use a list comprehension, then use list_to_str (below) to get

back to a string!

['H','e','l','p','!']

If you have a list of characters and want a string, feel free to use this

function (copy it to your file) to convert from list to string:

def list_to_str(L):

 """ L must be a list of characters; then,

 this returns a single string from them

 """

 if len(L) == 0: return ''

 return L[0] + list_to_str(L[1:])

Here's how to test list_to_str: list_to_str(['c','s','5','!']) should

return 'cs5!'

Some encipher examples:

In [1]: encipher('xyza', 1)

Out[1]: 'yzab'

In [2]: encipher('Z A', 1)

Out[2]: 'A B'

In [3]: encipher('*ab?', 1)

Out[3]: '*bc?'

In [4]: encipher('This is a string!', 1)

Out[4]: 'Uijt jt b tusjoh!'

In [5]: encipher('Caesar cipher? I prefer Caesar salad.', 25)

Out[5]: 'Bzdrzq bhogdq? H oqdedq Bzdrzq rzkzc.'

Function to write #2: decipher(S)

On the other hand, decipher(S) will be given a string of English text already

shifted by some amount. Then, decipher should return, to the best of its

ability, the original English string, which will be some rotation (possibly 0) of

the input S.

Note: some strings have more than one English "deciphering." What's more,
it is difficult or impossible to handle very short strings correctly. Thus,
your decipher function does not have to be perfect. However, it should work

almost all of the time on long stretches of English text, e.g., sentences of 8+

words. On a single word or short phrase, you will not lose any credit for not
getting the correct deciphering!

Hints:

• A good place to start is to create a line with every possible
ENCODING, something like this:

• L = [__________ for n in range(26)]

• Then, you will want to use the LoL "list of lists" technique in which each

element of L gets a score. You might want to look back at how that

worked...
• LoL = [__________ for x in L]

• It's entirely up to you how you might want to score "Englishness." See
below for some starting points... .

• To be specific, take a look at the bestWord example that found the word

with the greatest scrabble-score in a list of words. That's not so far
from what you want here!

• Then, go back and take a look at the min/max lecture to see how to
handle the LoL "list of lists"

One approach you could try is to use letter frequencies -- a function
providing those frequencies is provided below -- feel free to cut-and-paste it
into your HW file. Scrabble scores have also been suggested in the past...!

You're welcome to use some additional "heuristics" (rules of thumb) of your
own design. Also, you are welcome to write one or more small "helper"
functions that will assist in writing decipher.

However you approach it, be sure to describe whatever strategies you used
in writing your decipher function in a short comment above

your decipher function.

Some decipher examples:

In [1]: decipher('Bzdrzq bhogdq? H oqdedq Bzdrzq rzkzc.')

Out[1]: 'Caesar cipher? I prefer Caesar salad.'

In [2]: decipher('Hu lkbjhapvu pz doha ylthpuz hmaly dl mvynla '\

 'lclyfaopun dl ohcl slhyulk.')

Out[2]: 'An education is what remains after we forget everything we have

learned.'

In [3]: decipher('Onyx balks')

Out[3]: 'Edon rqbai' # mine is wrong! This is OK here...

Note that the last example shows that our decipherer gets some short
phrases wrong -- this is completely OK!. Your decipherer should get more
and more phrases correct, the longer they get, but it does not have to get

single words or short phrases -- after all, for short strings, there are likely to
be rotations that have more "English-y" letters than the original!

Here is a letter-probability function and its source:

table of probabilities for each letter...

def letProb(c):

 """ if c is the space character or an alphabetic character,

 we return its monogram probability (for english),

 otherwise we return 1.0 We ignore capitalization.

 Adapted from

http://www.cs.chalmers.se/Cs/Grundutb/Kurser/krypto/en_stat.html

 """

 if c == ' ': return 0.1904

 if c == 'e' or c == 'E': return 0.1017

 if c == 't' or c == 'T': return 0.0737

 if c == 'a' or c == 'A': return 0.0661

 if c == 'o' or c == 'O': return 0.0610

 if c == 'i' or c == 'I': return 0.0562

 if c == 'n' or c == 'N': return 0.0557

 if c == 'h' or c == 'H': return 0.0542

 if c == 's' or c == 'S': return 0.0508

 if c == 'r' or c == 'R': return 0.0458

 if c == 'd' or c == 'D': return 0.0369

 if c == 'l' or c == 'L': return 0.0325

 if c == 'u' or c == 'U': return 0.0228

 if c == 'm' or c == 'M': return 0.0205

 if c == 'c' or c == 'C': return 0.0192

 if c == 'w' or c == 'W': return 0.0190

 if c == 'f' or c == 'F': return 0.0175

 if c == 'y' or c == 'Y': return 0.0165

 if c == 'g' or c == 'G': return 0.0161

 if c == 'p' or c == 'P': return 0.0131

 if c == 'b' or c == 'B': return 0.0115

 if c == 'v' or c == 'V': return 0.0088

 if c == 'k' or c == 'K': return 0.0066

 if c == 'x' or c == 'X': return 0.0014

 if c == 'j' or c == 'J': return 0.0008

 if c == 'q' or c == 'Q': return 0.0008

 if c == 'z' or c == 'Z': return 0.0005

 return 1.0

Function to write #3: blsort(L): Binary-list

sorting...

Design and write a function named blsort(L), which will take in a list L and

should output a list with the same elements as L, but in ascending order.

However, blsort ONLY NEEDS TO HANDLE LISTS OF BINARY DIGITS,

that is, this function can and should assume that L will always be a list

containing only 0s and 1s.

You may not call Python's sort to solve this problem! Also, you should not

use your own sort (asked in a question below), but you may use any other
technique to implementblsort. In particular, you might want to think about

how to take advantage of the constraint that the input will be a binary list --

this is a considerable restriction!

One function that some have found helpful is count(e,L), one of the helper

functions we used in an earlier class. Grab it from there (or try rewriting it,

perhaps... here's the crucial piece: LC = [1 for x in L if x==e] !)

You would need to include count(e,L) in your file, and then you could use it

to return the number of times that e appears in L... .

Here are some examples:

 In [1]: blsort([1, 0, 1])

 Out[1]: [0, 1, 1]

 In [2]: L = [1, 0, 1, 0, 1, 0, 1]

 In [3]: blsort(L)

 Out[3]: [0, 0, 0, 1, 1, 1, 1]

Hint: in the end, this problem is much easier than ordinary sorting!

Function to write #4: gensort(L): General-

purpose sorting

Use recursion to write a general-purpose sorting function gensort(L) which

takes in a list L and should output a list with the same elements as L, but in

ascending order. Feel free to use the max function built-in to Python (or min if

you prefer) and the remOne function we discussed in class. Recursion -- that

is, sorting the rest of the list -- will help, too.

Here are some examples:

 In [1]: gensort([42, 1, 3.14])

 Out[1]: [1, 3.14, 42]

 In [2]: L = [7, 9, 4, 3, 0, 5, 2, 6, 1, 8]

 In [3]: gensort(L)

 Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

For this problem, you should not use any of Python's built-in

implementations of sorting for this problem -- for example, sorted(L) or

L.sort(). Rather, you're designing and implementing your own approach

from scratch!

Note that gensort(L) should work for lists L. It does not have to work for

string inputs.

Function to write #5: jscore(S, T): Jotto

scoring

Write a function named jscore(S, T), which will take in two

strings, S and T. Then, jscore outputs the "jotto score" of S compared with T.

This jotto score is the number of characters in S that are shared by T.

Repeated letters are counted multiple times, as long as they appear multiple
times in both strings. The examples below will make this clear. Note that, in

contrast to the traditional game of 5-letter jotto, we are not constraining the
lengths of the input strings here!

There are several ways to accomplish this, many of which use small helper-

functions - feel free to add any such helper functions you might like. (We
may have written what you need in class... .)

Note that if either S or T is the empty string, the jotto score should be zero!

Hint This line turns out to be a useful test: if S[0] in T:

Some examples:
 In [1]: jscore('diner', 'syrup') # just the 'r'

 Out[1]: 1

 In [2]: jscore('geese', 'elate') # two 'e's are shared

 Out[2]: 2

 In [3]: jscore('gattaca', 'aggtccaggcgc') # 2 'a's, 1

't', 1 'c', 1 'g'

 Out[3]: 5

 In [4]: jscore('gattaca', '') # if empty, return 0

 Out[4]: 0

Function to write #6: exact_change(target_amount, L)

Making change! Use recursion to write a Python

function exact_change with the following signature:

def exact_change(target_amount, L):

where the input target_amount is a single non-negative integer value and the

input L is a list of positive integer values. Then, exact_change should return

either True or False: it should return True if it's possible to

create target_amount by adding up some-or-all of the values in L. It should

return False if it's not possible to create target_amount by adding up some-or-

all of the values in L.

For example, L could represent the coins you have in your pocket

and target_amount could represent the price of an item -- in this

case, exact_change would tell you whether or not you can pay for the

item exactly.

Here are a few examples of exact_change in action. Notice that you

can always make change for the target value of 0, and you can never make

change for a negative target value: these are two, but not all, of the base

cases!

In [1]: exact_change(42, [25, 1, 25, 10, 5, 1])

Out[1]: True

In [2]: exact_change(42, [25, 1, 25, 10, 5])

Out[2]: False

In [3]: exact_change(42, [23, 1, 23, 100])

Out[3]: False

In [4]: exact_change(42, [23, 17, 2, 100])

Out[4]: True

In [5]: exact_change(42, [25, 16, 2, 15])

Out[5]: True # needs to be able to "skip" the 16...

In [6]: exact_change(0, [4, 5, 6])

Out[6]: True

In [7]: exact_change(-47, [4, 5, 6])

Out[7]: False

In [8]: exact_change(0, [])

Out[8]: True

In [9]: exact_change(42, [])

Out[9]: False

Hint: Similar to LCS, below, this problem can be handled by

recursing twice and giving a name to each of the two results.

• For the first, try solving the problem without the first coin. (This is
the loseit case!)

o You might even use the variable name loseit, as in loseit =
exact_change(...)

• For the second, try solving it with the first coin. (This is
the useit case!)

o You might continue by using the variable name useit, as in useit
= exact_change(...)

• Then, have your code figure out what the appropriate boolean value to
return, depending on the results it gets!

o Hint on this last part of the hint: This problem puts
the or into useit or loseit - literally!

Function to write #7: LCS(S, T): DNA matching

This week's final algorithmic challenge is to write a function named LCS(S, T

), which will take in two strings, S and T. Then, LCS should output the longest

common subsequence (LCS) that S and T share. The LCS will be a string

whose letters are a subsequence of S and a subsequence of T (they must

appear in the same order, though not necessarily consecutively, in those
input strings).

Note that if either S or T are the empty string, then the result should be the

empty string!

Some examples:

 In [1]: LCS('human', 'chimp')

 Out[1]: 'hm'

 In [2]: LCS('gattaca', 'tacgaacta')

 Out[2]: 'gaaca'

 In [3]: LCS('wow', 'whew')

 Out[3]: 'ww'

 In [4]: LCS('', 'whew') # first input is the empty

string

 Out[4]: ''

 In [5]: LCS('abcdefgh', 'efghabcd')

 Out[5]: 'abcd'

Note that if there are ties, any one of the ties is OK: in the last example

above, 'efgh' would be an equally acceptable result.

Hint: Consider the following strategy:

• if the first two characters match, use them!
• If the first two characters don't match, recurse twice: you could call

this use it or lose it or lose it!

• For the first "lose it," recurse to toss out one input's initial letter:
• result1 = LCS(S[1:],T)

• For the second "lose it," recurse to toss out the other input's initial

letter:
• result2 = LCS(_ , ____)

• here, a couple details need to be filled in... .
• Finally, return the better of those two results -- you'll have to remind

yourself what "better" means for this problem!
• good luck!

Extra!

Are you saying to yourself, Never enough algorithms! ?

Here is an optional extra-credit algorithm-design challenge that builds
from exact_change. It's more difficult because

• it returns the actual coins for making change, and
• it can also return False, so there are several cases to handle after the

recursion...

Extra-credit option #1: make_change(target_amount, L

) (up to +6ec pts)

For up to +6 e.c. points, write a second change-handling function
named make_change(target_amount, L).

This function should actually determine which values (from L) could be

returned to total the target_amount.

That is, instead of simply returning True or False, your make_change function

should return a list of coins taken from L that sum up to target_amount. If

there is no such list, then make_change should simply return False. If there are

more than one possible lists of values from L, then your function may return

any one of the valid answers.

The order of the values returned does not matter, though it's natural to have
them in the same order as they appear in the original list (our tests will do

this...).

You do not have to, but you are welcome to use exact_change as a subroutine

here!

The examples below show how make_change should work; these are the same

inputs as in the exact_change function above.

In addition, sorted has been called, at least on the non-empty feasible cases,

so that the results have a well-defined order:

In [1]: sorted(make_change(42, [25, 1, 25, 10, 5, 1]))

Out[1]: [1, 1, 5, 10, 25]

In [2]: make_change(42, [25, 1, 25, 10, 5])

Out[2]: False

In [3]: make_change(42, [23, 1, 23, 100])

Out[3]: False

In [4]: sorted(make_change(42, [23, 17, 2, 100]))

Out[4]: [2, 17, 23]

In [5]: sorted(make_change(42, [25, 16, 2, 15]))

Out[5]: [2, 15, 25]

In [6]: make_change(0, [4, 5, 6])

Out[6]: []

In [7]: make_change(-47, [4, 5, 6])

Out[7]: False

In [8]: make_change(0, [])

Out[8]: []

In [9]: make_change(42, [])

Out[9]: False

Submission

Be sure to submit your hw3pr2.py file in the usual way at the submission site!

http://www.cs.hmc.edu/submit

	Gold Problem 2: Sorting out Caesar!
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/CaesarCipherGold on 3/22/2017
	[60 points; individual or pair] filename: hw3pr2.py
	Function to write #1: encipher(S, n)
	Function to write #2: decipher(S)
	Function to write #3: blsort(L): Binary-list sorting...
	Function to write #4: gensort(L): General-purpose sorting
	Function to write #5: jscore(S, T): Jotto scoring
	Function to write #6: exact_change(target_amount, L)
	Function to write #7: LCS(S, T): DNA matching

	Extra!
	Extra-credit option #1: make_change(target_amount, L) (up to +6ec pts)
	Submission

