
Black Problem 2: Huffman Compression [75

points]

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Huff
manBlack on 3/15/2017

Due: 11:59 PM on November 14, 2016

Starter files

First, here is a set of placeholder files to start with:

 hw9pr2.zip

Next, the Millisoft back story!

You've been hired by Millisoft. Your boss, Gill Bates, has asked you to

implement a Huffman compression scheme as part of their new operating
system, Portholes 8. Specifically, you will implement two
programs: compress.py and uncompress.py. The compress.py program is the

"interesting" part, implementing Huffman compression.
The uncompress.py program is quite short, implementing decompression. You

will also submit two additional documents: design.txt and tests.txt; more on

these below.

When you submit, be sure to place your files:

• compress.py
• uncompress.py
• design.txt
• tests.txt

• huff.txt (already there)

into a folder named hw9pr2 and zip up that folder into a file named hw9pr2.zip.

Then, submit your hw9pr2.zip file in the usual way at the submission system.

https://www.cs.hmc.edu/twiki/bin/view/CS5/HuffmanBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/HuffmanBlack
http://www.cs.hmc.edu/~cs5grad/cs5/hw9pr2.zip

Design First

Like most software companies, Millisoft requires its software engineers to

submit a software design document before embarking on the
implementation. So the first thing that you must do is write a document,
called design.txt, that lists the functions that you plan to implement for each

of your compress.py and uncompress.py programs. For each function, you

should give the full "signature", i.e., the name of the function and the list of
its arguments, but not the actual Python code that implements the function.
Also, for each function you should provide a docstring that clearly describes

what those arguments are and what the function will return as a result.
Remember that each function should perform a clearly delineated task (e.g.
building the tree from the frequencies, etc.).

The Functionality of Your Programs

Your compress.py program should have the following functionality:

• The program starts automatically when you run the file (using the

"main" trick described in class and below).
• The program asks the user for the name of a file.
• The program reads the file.

• The program counts the number of occurrences of each symbol in the
file, and computes the frequencies.

• The program builds the Huffman encoding tree for this set of symbols.

• The program builds the prefix code from the tree.
• The program encodes the text in the file using the prefix code.
• The program now has a long binary string of symbols. It then packs

(or "chunks") these bits, 8 at a time, into characters. Remember the
built-in functions chr and ord! (chr accepts a number between 0 and

255 and returns the corresponding character, while ord accepts a

single character in quotes and returns the corresponding numerical

representation between 0 and 255.)
• This string of characters is now written to an output file whose name is

the same as the input file except that the suffix .HUFFMAN is added to

the end. For example, if the input file had the name myfile then the

output file would be called myfile.HUFFMAN. This encoded file contains

the prefix code (the code for each of the symbols—also known as "the

dictionary") followed by the encoding.
• The program should report the following statistics:

o The number of different characters in the input file.

o The total number of bytes in the input file.

o The number of bytes required to store the code in the
compressed file (this is called the "dictionary overhead").

o The number of bytes used to store the compressed text
(excluding the dictionary overhead).

o The total length of the compressed file in bytes (this is just the

sum of the previous two items).
o The compression achieved (length of compressed file divided by

length of original file).

o The "asymptotic compression" achieved (length of compressed
file except for the dictionary overhead divided by the length of
the original file). This is the amount of compression that would

be achieved if the file were so long that the dictionary overhead
became negligible.

For one test case, you should use a text file (originally from Wikipedia) on

Huffman Compression, called huff.txt, which is included in the starter folder

(See hw9pr2.zip, at the top of this page.) For reference, that file is also here.

It is a sample text file that the graders (and you) will use in trying your

encoding (compress) and decoding (uncompress) programs.

Here is some sample input and output for the huff.txt file:

Enter name of file to be compressed: huff.txt

Original file: huff.txt

 Distinct characters: 56

 Total bytes: 2439

Compressed file: huff.txt.HUFFMAN

 Dictionary overhead in bytes: 563

 Compressed text length in bytes: 1377

 Total length in bytes: 1940

 Actual compression ratio: 0.795407954079

 Asymptotic compression ratio: 0.564575645756

Notice that your program might achieve slightly better or worse compression
due to the way that you save your dictionary (the prefix code). However, it
should use exactly the same number of bytes to encode the data (in the

example above, 1377 bytes). Note:If you use a special character to
represent the end of the file, as discussed under "Some Details" below, your
compressed text should be 1378 bytes long.

Also notice that the last byte of your compressed output won't necessarily
contain 8 bits. However, since the computer operates in bytes, you'll have to

http://www.cs.hmc.edu/~cs5grad/cs5/huff.txt

occupy a full byte even if you're storing only one bit. If your compression
program claims to use only 1376 bytes, you're rounding incorrectly.

Your uncompress.py program will be relatively short. It should have the

following functionality:

• It runs automatically using the "main trick". It simply asks the user for

the name of the file to decode, and checks to make sure that the file
name ends in .HUFFMAN. If not, it complains that the file is not of the

right type and asks the user for a new file name.

• The text is decoded and placed in a file that has the same name as the
input file, but with the ending .DECODED. For example, if the original file

was huff.txt then the encoded file would be called huff.txt.HUFFMAN and

the decoded file would be called huff.txt.HUFFMAN.DECODED. If your

encoder and decoder work correctly, then huff.txt.HUFFMAN.DECODED is

perfectly identical to huff.txt.

Here is some sample input and output:

Enter name of file to be UNcompressed (must end in .HUFFMAN):

huff.txt.HUFFMAN

Output written to file: huff.txt.HUFFMAN.DECODED

An Important Note

Be sure to read the hints below before you start writing your code!!!

The Implementation of Your Programs

Your implementation should follow the design in your design.txt document.

If you need to make some changes as you implement, that is OK, but you
should put comments at the very top of your program explaining the
deviations from the original design and why they came about. (You should

NOT change design.txt to make it match your final implmentation) A small

number of deviations from design.txt is fine. A large number of deviations

will suggest that the design was not as good as was intended. This is very

much like a builder making changes to an architect's plans: a few changes
are expected, but a larger number of changes suggests that the architect
probably wasn't as careful as he or she should have been.

Also, you must have a global debug variable. When this variable is set to True,

your functions will provide you a verbose description of what they are doing
(e.g. telling you that the program has just entered or exited a given

function, telling you the value of some important variable in that function, or
any other information that might be useful when trying to understand what's

going on as the function runs). We'll run your program first with debug =

True and then with debug = False.

The "main" Trick

Traditionally, the "outer" function of a program, the one that controls all of

its behavior, is named main(). In Python, if you have a main() function, the

following two lines of code will cause main() to be automatically executed

when the file is run from the command line (e.g., python foo.py):

if __name__ == "__main__":

 main()

Note that each word above is surrounded by two underscore characters;

most browsers will omit space between them so that they look like long
horizontal lines.

File Input and Output (I/O)

Before you can access a file, you must first "open" it. You do this with the
Python open function:

 handle = open(filename, mode)

Here, filename is the name of the file you want to access; mode is

either "r" (I want to read the file) or "w" (I want to write the file). Writing a

file will create it if necessary, and wipe out the previous contents if the file
already existed. The "r" or "w" can be followed by a "b" for "binary" (i.e.,

"rb" or "wb"). Because Python 3 distinguishes text and binary files,

you must use the "b" suffix for your .HUFFMAN file. Somewhat oddly, you

must also use it for the text files.

For example, to create the file huff.txt.HUFFMAN in your current directory, you

would do:

 huffman = open("huff.txt.HUFFMAN", "wb")

Open returns a handle, which you will use to get further access. The name of

the handle is up to you. You can write a string s to a file with, e.g.:
 huffman.write(s.encode('latin-1')) # Encode is only

needed for "wb" files

When you are done with a file you should close it:
 huffman.close()

Reading a file is a bit more complicated, because Python gives you several

options. Perhaps the most straightforward is read, which by default swallows

up the entire file and returns it as a string. For example:
 huff2 = open("huff.txt", "rb")

 huffstring = huff2.read()

 huff2.close()

 # Convert to Python characters

 huffstring = huffstring.decode('latin-1')

 # You can now process the data in huff2 using normal

string operations

Since files can be (very) large, this isn't always the best approach. Instead,
you could read one character at a time (which is very inefficient) with:
 huffchar = huff2.read(1)

When there are no more characters left in the file, read will return the

empty string.

A compromise between swallowing the whole file and being too slow
is readline, which reads one line (up to a newline) at a time:

 huffline = huff2.readline()

Again, an empty string means there's nothing more. Readline isn't very

useful for this assignment, since compressed files aren't divided into neat
lines. But you might find it useful in the future.

Finally, if you want to process a file line by line, you can also use a for loop.

Here's a complete example that prints all the comments in a Python file
(and, perhaps, other lines, as well…):

 program = input("Enter a Python file name: ")

 handle = open(program, "r")

 for line in handle:

 if '#' in line:

 print(line, '')

 handle.close()

(The trailing empty string in "print(line, '')" keeps Python from adding an

extra newline at the end of each comment, since the result

of readline already contains one.)

You'll note in the above example that we didn't use "rb" for the open mode,
and that we didn't do the "decode" operation. This has to do with how

Python handles strings. In normal circumstances you should use just "r" and
"w" for files that contain text, and then you don't need to decode the file.
However, Huffman is an unusual program and so you'll need to follow the

recipe above.

Submitting a Testing Document

Like most software companies, Millisoft requires that you test each function
immediately after you write it and that you submit a document summarizing
your tests. Your document will be called tests.txt.

For example, if a function is supposed to accept a dictionary of letter

frequencies as its argument and return a Huffman tree (as a tuple) as its
result, you can test it by constructing a small dictionary of frequencies and
giving it to this function. The test should be small enough that you can figure

out by hand what the answer should be. Then check the function's result
against your answer. Then, add to your tests.txt file something like "For the

buildTree function, I used the following test arguments (list your test

arguments) and verified that each one of them produced the correct tree."

Most software companies require that their software engineers submit such
a test summary as evidence of reliability of the software. For your own sake,

the programming will be much more efficient if you achieve metaphysical
happiness with each function before moving on to the next function. The
debugging time will be dramatically reduced!

Sage Advice and Partial Credit

If you design your program carefully and test equally carefully, this

assignment should be fun and instructive. The total number of lines of code
in this assignment is about the same as, or even slightly less than, in the
previous one. However, if you can't complete the assignment for any reason,

then be sure to implement as many of the parts of the algorithm as possible
to get at least some fraction of the credit for your work.

For example, building the frequency table, constructing the Huffman tree,

and building the prefix code from the tree demonstrates that you have built
some of the core functionality. Next, generating the binary string that
encodes your file using the prefix code demonstrates a bit more

functionality. Packing the binary string into 8-bit chunks and writing these as
characters to a file provides evidence of progress on the compression part of
the code.

Some Details

• How you wish to save the Huffman dictionary (the prefix code for all of

the symbols) in your compressed file is entirely up to you. Please
include a detailed comment in your compress.py file to explain your

scheme. (But see the hints below.)
• You may find it useful to use some of the base-conversion code that

you wrote in an earlier assignment or to modify this code slightly. You
may use those functions (paste them into whichever files you need
them).

• You may find it useful to use functional-programming mechanisms in
some places. In particular, using recursion will be very helpful. In
addition, using map or a list comprehension with anonymous functions

can make your code much simpler and more elegant. Please keep this
in mind.

• Notice that although we discussed Huffman Coding by talking about

frequencies of symbols, the frequency of a symbol is just the number
of times it occurs divided by the total number of occurrences of all
symbols. That is, it is a "normalized" count. In fact, we can just use

the counts (actual number of occurrences of the symbols) without
normalizing, and the algorithm will work just as well. This is easier!
We'll keep using the term "frequency" below, but you can think of this

as just the "count" instead.
• You may find it useful to use Python's dictionary type to keep your

code clean and elegant. In particular, imagine that your program

constructs a dictionary where each symbol in the file has an associated
frequency. Then, you can use that dictionary to build up the Huffman
Tree. This is a nice way of doing business! Please refer to your lecture

notes for everything you need to know about the dictionary type.
Remember, though, that dictionaries can only have keys that are
immutable. Therefore, one can have a dictionary of numbers, strings,

and tuples, but not of lists!
• When you write your compressed file, the bits you write probably

won't wind up on an even byte boundary, so you'll have some

leftovers. That can be a problem when you read the file back: what do
those leftover bits decode to? The solution is to add one extra
"character" to your symbol dictionary. The extra entry represents EOF

(end of file) and has a frequency of 1. Be sure EOF is decoded to
something that you can tell from a legitimate character, such as the
string "EOF" or the Python symbol None.

Some Helpful Hints

There are a few Python tricks that you can use to make your life easier:

• You can't write a Python string to a file that has been opened in "wb"
mode. Instead you have to give it a bytes object. You can convert a

string named s to byteswith s.encode('latin-1'). So, for example, you

might write s to a file f with f.write(s.encode('latin-1')).

• Similarly, when you read from a file that has been opened in "rb"
mode you will get a bytes object. You can convert a bytes object b back

to a regular string with b.decode('latin-1').

• The easiest (though not the most efficient) way to write the tree to the
compressed file is to express it as a list or tuple, and then convert it to
a string with str. When you read the tree back, if you read it into a

string s, you can then convert it back to a list or tuple with eval(s).

(But when you read it back in, how will you know where it ends? One
way is to arrange to know how many characters it occupies.)

• When you are building your Huffman tree, you will need to sort your

list of [frequency, character] pairs. If those are stored in freqs, you

can use freqs.sort(key = lambda x: x[0]) to sort based on the first

element in the pair. (If you don't use the key argument, you may get a

Python runtime error.)

Submit!

Place your files:

• compress.py
• uncompress.py
• design.txt
• tests.txt

• huff.txt (already there)

into a folder named hw9pr2 and zip up that folder into a file named hw9pr2.zip.

Then, submit your hw9pr2.zip file in the usual way...

	Black Problem 2: Huffman Compression [75 points]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/HuffmanBlack on 3/15/2017
	Starter files

	Next, the Millisoft back story!
	Design First
	The Functionality of Your Programs
	An Important Note
	The Implementation of Your Programs
	The "main" Trick
	File Input and Output (I/O)
	Submitting a Testing Document
	Sage Advice and Partial Credit
	Some Details
	Some Helpful Hints

	Submit!

